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CHAPTER 1
INTRODUCTION

When 4n educational researcher conducts a stirvey it is almost always carried
out in the administratively simpic form of u clostcred (and péééibiy
weighted and stratified) sample of schools and classes. If the analysis of
the data collected in this way 1s confined to means and di Ffércnces between
mcans, then the sampling variability, which is crucial to infererce and to

1 complete mnderstanding of the resalts, may be found using formulac avail-
able in the standard texts {for cxample; Cochran; 1963; and Kish, 1965).
llowever, once the researcher attempts to use more sophxstlcated statistical
prbccdurés; the 'standard formulae' arc found to apply oniy to SImpie random
sampling. In the past; researchers have applied these erroneous 'standard
formulac' and (hopefully) have handled the results with suspicion. Pievious
rescarch (Peaker, 1975 and Ross 1076) has shown that this suspicion is
well-founded. The scarch for a solution to this probiem has thrown up
several approximate and intuitive technlque% for estlmatlng sampllng errors
given just one sample as evidence (Kish and Frankel 1972y . 1t is the
purpese of this study to investigate the accuracy of one such approximation
teghn1quc (Woodruff and CaLsey, 1976) under several of the types of sampllng

schemes that a typical educational research worker might be forced to employ.

Of course; the dccuracy of the results is not the only crlterlon for
evaluating Such a technique. Ease of dPPllCﬂtlon is of great practicai
impbrtunCé; as i3 fIéXIbIIItV in the face of the diverse statistical and
sampling situations which arise in educational research. The pdrtituidr
technique to be studied was chosen because it was found to be the only
technlquc available which struck a worthwhile balance between the demands
it places on the skills of the research workey and the range of p0551b1e
upplxcatxons in which it would be suitable. To apply the technique the
resedtrcher must be able to write a few Fortran subroutines and must be able
to ascertain a sampllng error formula for a mean for whatever sampllng
situation is to be used (1.c. look up one of Lhe bLand41d texts ) In return
the tCChniquc will providé an estimate of the sampIIng error for any

statistic which can be expressed in terms of a Fortran subroutine.
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The two deinnds on the rcgbﬂrthCr are lso ihVestigdtcd in this study;
A guide to the use of the techiique and the writing of the Fortran sub-
routines is provided as an Appendix in Microfiche to this Paper. Secveral
approximation foimulde for the sampling error of a mean, which might hppiy
technique and their performances cvaluated. The establishment of an
adequate approximition formula would considerably décrease the difficulty
in nppiying the tCChhiquc and open the way for its incorporafion into

'user-oriented' packages.



CHAPTER 2
LITERATURE REVIEW

21 Introduction
The substance of most Sampling Theory textbooks (for example, Cochrin
(1963), and Kish (1965)), is the estimation of deseriptive statistics and
their standird errors for compiex sumpié désigns. Descriptive statistics are
aggregates and means, and their ratios and products. However, iiany prac-
titionets .re iulso interested in estimating analytieazl statistics such as
regression coefficients; discriminant functions and correlation coeff-
icients, for the complex samples they use. Theory is lacking for the
samples: rescarchers have been forced to resort to the formulae supplied
by the textbooks for simple random sampling.

In order to alleviate this unfortunate situation attempts have been
made to construct an appropriate theory with which to tackle the problem,
but progress huas been slow. Another solution was proposed by Tukey (1954):

Statistical mcthods should beé tailored to the real needs of the

aser ::: 'What shounld be done' is aimost always more important
than 'what can bc done exactly'. Hence new developments in

experimental statistics are more_likely to come in the form of

approximate methods than in the form of exact ones.

Sevérdi tetﬁhiqUes éor approximdting standard errors from singié
samples have been described: I shail refer to them collectively as
"single-sample techniques’.

There are tﬁérrepZiéa?éd éd@pliﬁg tbchhi?déérdf Ja??khifihg and
Balanced Repeated Replication (aiso known as Pseudo-replication), the
random splitting technique (alse known as Independent Replication and
Deming's Technique) and the Taylor's series approzimation (variously known
as the linecarization method, the delta-technique, the propagation of error,
and Taylorized deviations): A brief description of the first two and a
more detailed analysis of the last follows.

2.2 Replicated Sampling Techniques
in surveys of jutc in India in 1936: bémihg (1956; 1960) advocated

designing samples which are easily broken-down into subsamples.
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Two tcnhnnqucs which have gained prominence are Balanced cheated

hu;l’cutlotz‘u1d the phzuﬁknzjﬂ

Suppose that a statistic y is being used to estimate a parameter 0
Jéééfdiﬁi fé éémé iéﬁﬁiiﬁé ﬁiﬁﬁ' Tﬁé ?if%i Eééﬁhidué, Balancud Repeated
tinits selected from cach stratum. The GCllCathﬂ is a half- sample created
by sclecting one of the two samplc units in each of the strata. The
FCPllLdflon prOLCSb is repeated g times. Then the estimates y! which are
formed by estimating the parameter from the complementary half bamples of

.th
the i replication may be used to approximate the variance of v thus:

|

var(s) = L3 v s 7

ar{) g & Yy y
i=1

McCarthy (1966) has shown that the most cfficient strategy is to

select oxthogonal GCllCﬂthPb only.

For the second thhniQuc, the Jdtkkhi#e which was or1g1nally due to
Quenouille (1956) and Tukey (1958), the §5ﬁﬁie is divided into g groups of
size m. Then tire values yk, the estimates based on the m(g-1) observation
remiining after deletlng the k group of m observations, are used to

ascertain the 'pscudovalues! yﬁ thus:
VF = av - (n21) v
Yk gy - (g-1) v,
These can then be used to form a jackknifc estimate of ©

2

*
Yk

v 1
b g &

and to estimate the variance of v
var(y) = var(ip) = oty 3o E - 7))

Investigations by Miller (1968) have qugaected that these estimates will
be thlsdetOrV when y can be ekpanded in a power series for each observ-
ation with
(i) the first-order term linear or regular in the observations;
(ii) second and higher-order terms negligible.
Simitar, though less restrictive assumptions; will be made later for the

Taylor's series approximation.

O
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2.3 Rindom Splitting of Sanples

The random subsamplc tCLhnlun wils devcloped by Demlng (1960) followin ng
suggest1ons from J:W: Tﬁkey; He estimated the variance of a statistic y
by splitting the bample into 10 equal 1ndependent and random subsamples,
estimating the statistic for ecach subsample y ) and foy the entire sample
(y) and then approximating th¢ variance of the statistic by the variance

of the mean (y) of the snbsample statistics.
10

, ¥ ;- 7?2
var(y) = =1 _
10(10 - 1)

Although bUpCTfIClHIIy SImpIe; this technique has several disadvantages
for educational research. First; the cstimation of Lompllcated statistics
may be necither 5tuble meanlngful for unbiased if only a small number of
suhsample; is taken (Flnxfter (1ﬂ7q), Mosteller and Tukey (1968)) Use of
so many subsamples all modelled on the p0551b1y clustered and stratified
original sample would necgate the computational 51mp11c1ty of the or1g1na1
ided . Second strata with sinall numbers of elements may need to be
combined to allow the total sample to be divided into a large number of
samples, resultlng in a loss of detail. Th1rd if a large number of sub-
samples is used, outliers in the or1g1na1 sample will have little chance of

appearlng in some of the subsamples (Deming; 1956).

These difficulties have meant that researchers have concentrated on
the other two techniques.
2.4 TherTay}dpﬁ;Se;iesfﬁppréximaeién

The use of a Taylor's series approximation to obtain an cstimate of the

variance of a mean has been familiar to statisticians for some time. Its

use for 'analytical statistics' was described by Demlng (1960 390- 396) and
Kish (19653585); and an éﬁrly atthoritative statement on itS use was made

by Kendall and Stuart (1963:231).

Let g be a function of the sample variates kl’ 2 . k’ which are
assumed to take the expected values Bl, 62 cee ek. If g is differentiable
at the poxnt (0 i il 8y ) then the Taylor's series expansion of g
about fel, 5 e k) is

5



i : L k : ; i
N R g(ﬂi, 65 .- ok) + I 2 (x. - 8.) 1)

]\ (o
i=1 X, i i
k Kk 25
1 s S =& - 0 X. -
bt 2 axpex O ICHEND
j=1i=1 J
kK k kK 23 7
1 —h i
+ ?‘ Z 2 Z X X :0X- (Xm Om)
m=1 j=1 i-1 m i1

...... (Kendall § Stuart, 1963 : 231-232)
where the partial derivatives are calculated at the appropriate cxpected

valués. The first-order approximation to g is

k .
R . e - N R | ag ... ;
l,g(xi; XZ' PPN Xk) = g(Ol, 02 ‘e Ok) + lgl ‘—x—l— (Xi - 01) (2)

The first assumption made in the use of the Taylor's series approximation
is that the sampling distribution of g is approximately equal to the
sampling distribution of this lincarized version of g:. Thus

Var (gj Vir (Lg)

k .
_ L 7'7' B . ’7 N C aY o 7"
= Var (8(0), 0y ... 0) + ;{% 3%; (x; - 8;))
1= 1
R , o
= Var (,Z‘ —;% Xi) (3
iz1 %%

since g(Oi; 0, -v. 0)) and 22 -3%, 0, are both constants (Frankel;
1971:28) . =l

values for the purtial derivatives: The seccond assamption involved in

the use of the Taylor's series approximation is that values of these
partial derivatives obtained from the sample are rcasonable approximations
of their true values. Tepping (1968) made use of such a technique when
multi-stage sampling design. Formulae for these partial derivatives

arc available for some of the mor€ common statistics such as ratio means,
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correlation coeftficients; and regreqslon cocfficients (Frankel, 1971:30-31):
However, beyond this the pround is as yet unexplored Furthermore; although
Tcpping found a mesns of using équation () in the particular sampling
situation he was invesr.jatirg, he alsv noted that:

the manner .n which the variance of that linear approximation
may be estimated will of toursec depend on the sample design.
(Tukey, 1954:723)

Unfortunitely the procedure for doing so is far from routine:

It wis to this latter problem that Woodruff (1971) turned his attention.
By restricting the variates to those which are sums of ths observations (or
sums of transformations of the observations), equation (3) may be re-

expressed thus:

Varf{g) = Var

[ MT‘

Ei *1j 4

when it is ussumed that the observed values have been enumerated from 1 to
n for each variuate Xi. As the two summations are finite, their order may

be reversed to give

S = Eﬁ

far (o - . g

Var(g) Var z; Z: 3% xij (5)
By definihg a ;U - Stntistic; for each case by

k.
SRR W , . )
Uy = ;E‘ ax; ) j=1,2 .. (6)

the equation becoines

11
Var(g) = Var 5%% Uj (7

Now, thesa H-statistics are simply anivariate statistics which are linearly
related to the orlglnal variates x, - Xk. The formula for the evaluation
of the variance in equatlon (7) is the one which would be approprlate for
the cstimation of the variance of a variable ander the parricuiar sampIIng
destn belng used.  This 1ntormat1on is avallable 1v the standard texts
Hansen; Harwitz and Madow f1953)): It shounld be noted that these sta1dard
texts will often quote a formula for the sampllng error of the mean of a
variable which will have to be adJusted to give the variance of the variable
which is needed here: This procedure will be referred to as the Woodruff

algorithm, or the Woodruff technique.

’ is



Awﬂpfggg_ﬁxdmﬁéen The descriptidh of the aigorithm used to estimate
example:
Consider the simple linear regression of the variable x on the

variable y, with n observations,

y; = a+ bxi tey i 1 ...n (8)

With the usual assumptions the best estimator of the regression slope b is

4 g
z (xl - ‘()yi

6 _ i=1
noo .9 ]
X (x - 07 (9)
i=1
where x = = Z X:
n o
If we define,
s; = (xi = x)yi i=1...n (10)
-2 .
ti = (xi x) I=1:.in

as the variates vo be used in the algorithm, then

n
2 si
i=1

b E T (a1
2 ti
i=1
and if

n .
s = 2 si (12)
i=1
n
t = 2: ti
i=1
then -
b = % (13)

Now the derivatives of the estimator with respect to each of the

totals s and t may be found,

1o

O
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ab o o-s (14
it 2

(o

Recourse to equation (7) then gives the Taylor Approximation of the

Variance of b as,

. f‘/ﬁ s n- \
PR .o 3b 53 b t.
var (b) = Var g ;;, i+ 57 > i (15)
i=1 i=1
) ii'si sti
= var o — - == L
i=l\t t2 (16)
. n U

= Var 2: i (17)

i=1
o N sti o
where u, = = - = (18)

i " t2

The variance involved in équatioh (i%j is the variance appropriafé
for a total nCCOraing to the pdrficuiar sampiing féchﬁidﬁé used:

The restrietion to fonctions of statistics which are totals of the
observations 1s not so great as it may appear at first glance. For instance,
a statistic as complicated as a multiple correlation coefficient may be
expressed as a function of the sums and sums of squares and sums of cross-
products of the variables involved in the regression equation. In this case
the original list of variates need only contain all of these in order that
the Woodruff algorithm be implemented:

In a paper;, written by Woodruff and Causey (1976); a computer program
is described which implemented this algorithm and Solved the problem of
cvaluatinig the partial derivatives by the use of a numerical technique which
avoids the necessity of supplying a formula. It does however, involve the
Writing of at least one Fortran subroutine.

They checked the accuracy of this further approximation in three ways.
First they compared the trué partial derivatives with the nimerical approx-
imations, and found that the greatest relative difference was less than two
parts in a million over a range of partial 'srivatives involved in the

crlculation of 48 different estimates in a six Stratum sampling design.

1
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Second. they compired the viriance estimates for these 40 statistics given

by the Tiaylor's series approximation using analytic derivatives; the relative
differences were ail less than onc part in a million, Third; for those
statistics for which no analytxc der1v1t1vcs were available, they compared
thc Il)lox's series dpproximation uslng numerical derivatives with the
Balanced Répéﬂtéd Replicntion and Juckknife techniques over a very wide

range of sampling designs; the results were found to he similar to those

that Frankel (1971) achieved in comparisons using analytical derivatives.

2.5 Earlier Evaluations of the Taylor's Series Approximation

Several studies investigating the Tavlior's series approwimatlon for the
ﬁstxmatlon of standard errors were conducted without the Woodruff-Causey
modifications. The tliree most importunt were those oé Frankél (1971),
Mellor (1973) and Bean (1975):

Frankel used data collected by the US Bureau of the Census in the 1967
Current Po;ﬁldtxon Survey to simulate clustered stratified sampling on the
basis of two primary sumpllng units per stratum. Comparlbon of the
chl;cutxou; Tackknife and Tavlor's series technlqués was made for scveral
sampling designs and for estimates of the mean, the difference of means,
simpie corre ldtlon Loefflclents regression Lo;ff1c1ents and multiple
correlation coefficients: His con:lasion was that nltHOUgh all three
techniques gave satisfactory estimates of variance, (except possibly for
the muifipié correlation tdcéfitibhtj the Tﬂylbr technique resulted in
smaller mean square error whilst Bzlanced Repeated Replication gave a
bctter approximation to Student's 't' statistic. Mellor's design was
simitar to this but u<ed Monte C1r10 qlmulatlon rather than ex1st1ng
population data and extended his comparison to pﬁrt1dl correlation coeff-
icients. Ilis conclus ons were essentially the same as those of Frankel;
a]though he did note the comparat ve strength of Taylor's series approx-
imition for error analysis of ordst statistics and hlghly skewed distrib-
utions. Bean, worklng at the National Center for Health Stat15t1c5,
dismissed this use of %ynthetlc populations as bexng iof questlonable
representativeness': She concluded from her study that both the Balanced
Repeated Replication and the Taylor's series approximﬁtion gave adequate

precision on the two Lrlterxa emploved by Frankel, (Bean, 1975:10-14).

10
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Accompanving the Woodruff-Causey paper was an empirical study using
the same ditd as Frankel. The results of this study reinforced the
conclusions of Frankel, although it was noted that the results using the

Taylor's series approximation ltecame substdntlally bétter with increased

snmptc size. llowever Woodruff and Causcy noted two other advantages of
this téchhiqhe.

1 The Taylor method is probably more economical for computer
time, particularly in situuations involving Iarge numbers of
btrata {and/or simple draws). With the Taylor approximation,
the basic data need be passed througﬁ the computer only twice,
once to evaluate the partial derivatives and then zgain to
form the substitute variables: The variances can then_be
computed with a_single pass of these substitiite variables.
with the other two methods,; the. basic data_must be tabulated
a large number of times to obtain the results for a ldrge
number of partial samplns _The 43,200 variances using the
Taylor=N method for the 6, 12 and 30 strata designs required

38 minutes of UNIVAC 1108 central computer time (6 cents per
variance at Census Bureau rates for this machine): .The
21,600 variances for the 90; 270 and 810 strg;g,gg51gns
rcquxred 85 miriuites of UNIVAC 1108 central computer time (2.3
cents per variance). This includes thg cost of the derivative

evaluation as well as the actual variance computation.

The ldyior approx1ﬁ5fiéﬁ is more versatile than the balanced
replication method, and can ecdsily be dpplied to any de51gn
for which there is a reasonable approximation to the variance
of a slngle varlable ~ The baldnced repllcatlon method is most

o

srrata and two draws per stratum. It can become difficulit in
other situations to find a balanced set of reasonable size.
{(Woodi-uff and Causcy, 1976:321)

A recent survey by Shah (1978) recommended tne Taylor's series approx-
imation over the other threce. e summarized the situation with Table 2.5.1
Which is from his article. He a1So noted that whereas for the Taylor's
serics approximation the total cost of computing variances is about twice
that of computlng the mean only, the other technlques requ1re between 50
dnd 100 times the cost of computing the mean. Furthermore he pdihts out
that if interpretition of the data reqmires the computation of variance
components; the Taylor's serics approximation is the only technique

appropriate.

dﬂéractitai Advances

2.6 som

Krewski aid Ruo (ié?éj have iﬁvesfigafed the theoretical basis for the
Taylor, Jackknife and Balanced Kepeated Replication methods of sampling

11

O

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

Table 2:5:1  Comparison.of Single Sample Techniques (from Shah 1978:32)

Criteria Restrictions o )
i on sample Compuitational ] ]
Techniqu Assumptions design problems Flexibility
Independent Minimal Severe Simple -

replications

Pseudo -
replication

Taylorized
deviations

Jackkn fe

Independence of
complementary
hulf replicates
General central
limit thecorem

Tntuition

2 PSUs per
stratum

None

Sighificahf

Not _.
difficult

Greater than

Taylorized
deviation

Can be ased
for variance
compenents
Maybe useful
for_some
designs

error estimation.

They have cstablished that as the number of strata

approaches infinity, all three cstimators are asymptotically normal and

consistent,

result is nonectheless quite comforting.

Although not very useful from a practical point of view; this

In a later paper they have also

invesfignféd the small Sﬁmpié propbttibs of the three types of estimator;

the results reported therc are of interest but have a very restricted range

of applicability due to the very strong model-assumptions necessary in such

an investigiation (Krewski and Rao, 1979).

Bobko and Reick (iéébj have made an interestihg éppiitatibh of tﬁe

Taylor's series approximation to functions of correlation coefficients.

As in equation (4) above they make the approximation of the function g of

the correlidtion coefficients r r

vVar (g(rl, Ty ens I‘]\;)) = X

1!
x

St

K.
>

—.

“

=1

2

<

—

.5 s rR thus,

le; €317 var (v

k.
ggi gj€)gife) cov (r;, 1)

where p is the expected value of the correlatisn coefficients, i.e.

p = fEfri); E(r,)

cee Efrk)

)
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Then using a normality assumption and some further restrictions they give
formulae for var{r: ) and tov(r , T ) Formulae for the defivatives are
ngen for some sxmpie statlsths such as the correction for attenuation
and indirect effects in path analysis. The resultant standard errors are
then evaluated u51ng data derived from synthetic populations. The emphagis
on normal distributione¢ p01nts up the restriction in usefulness of this
partiénlﬁr ﬁpproaoh. In situations when the assumption of normal distrib-
utions was not tcnable (whlch is often the reason for trylng a Taylor
Appxoxlmatxon) the e xpressions for the varidnce and covariance wouid not
be nppllcabie; Tie strength of this approach may lie not inm the value of
the actual standard errors ohtained in any partlcular situation, but
rather in the value of obtalnlng fu..ctional forms for the standard errors
in terms of the correlation coefficients. The existence of such forms,
even though based on qu1te restrictive assumptlons, allows the 1nvest1gatlon
of sampling errors on a different level to that which has prev1ously been
pOSSIbIéZ
Since the poblication of the Woodruff-Causey paper, several general

programs using 1aylor series approxlmatlons have pecome available. There
is, of course, the orlglnal Woodruff- ~-Causey program. Next was Shah's
STDERR (stdndard ErTors Program for Sample Survey ﬁata) which computes
certain ratio estimates or totals and their standard errors froem the data
collocted in a complex multistage samplé survey and is available within
the SAS package (Shah, 1974) . Hidiroglou, Fuller and Hickman (1975)
published SUPER CARP (Cluster Analysis and Regressions Programme) which

estimates totals, ratlos, dlfferences of ratios and regre551on coeff-

designs and for a one-fold nested error structure. M.M. Holt (1977) has
produced SURREGR (Standard Errors of Regression Coéffitiénts) for the
testing of hypotheses concerning regression models using a stratified
multistage sampllng de51gn and ordlnary least squares or weighted least
squares. The World Fert111ty Survey has produced a program callcd CLUSTERS
which uses the 'oolIapsed strata’ téchnqué menticrned earlier to prodﬁéé
error estimates for ratio estimators (Verma and Pearce, 1978). The Office
of Rescarch and Statlstlcs within the uU.s. Soc1a1 Securlty Admlnlstratlon
is devcioping a software paékagé deSIgnéd to accommodate many different
sampling designs but it is as yet able to offer the Taylor Approximation

only in the Keyfitz form (see equation (5)) (Finch; 1978). A survey of

13
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tne mimy computer programs available; 5ummar1s1ng a few important features
fur uch, hns ulsu uppcnlcd fhapldn, Francis und Sedrdnwk 1070) On¢ method
(Woodruff and Causey, 1976 and Maurer; Jones and Br:rant, 1978). This
involves the comparison of the programs with respect to their cnmputatlonal
eft1CLcncy, evaluated in terms of centril processing time; for a represent-
ative sample of designs. This comparison I may loom large in the eyes of
computer programmers, but for a research worker, the issues of ease of
1pp11c4t10n and dddptﬂblllt) to different situations will prove moch more

1mportant.

Although much valuable work has been done at many research centres;
they have invariably been concerned w1th tne so'ution of the sampllng
crror problem in terms of the particular style of sample design dominant
at cach centre and in terms of the particular range of statistics that are
studied there. The incorporation of sampling error routines into such
phckhgbs ds SAS @nd OSIRIS has begun and will eventUJlly make the calcu-
trtion of sampling errors u routine procedure within the 1imitations of
the appl\catlon of those ﬁdtkagcq It would seem however that beyond
this the rescllcher wxll be forced e1ther to write entire programs for
whichever SIngIé-gﬁmplé tééhniqUé is ChﬁSéﬁ, or to write the typé of semi-
standard subroutines which are necessary to the application of the Woodruff-

Catisey program.

Attention to the problem of variance estimation by c¢ducational and psycho-
log1cal reqearchers was urged by Marks (1947) in connection with a revision

of the Stunford BJnet Scale.

Ignorlng thc effects of cluster dmplln" on measurcs oF sampllng

error has undoubtedly resulted in attaching importancc to results
which are stdtistically insignificant. (Marks, 1947:413)

lle found that the standard errors as calculated by the simple random
sampling formulac were underestimating the true standard errors by a factor
of threé. The flrst investigation of sampling errors for a large-scale
educational sUrvey was nade h) pedker (1953) Standard errors were .ound
to be underestimated by half in this case:

The whole topic was consolidated with the work of Kish who introduced

the statistic 'Deff'! (design effect) which is

14



the ratio of the actual variance of a sample to the variance
of o <iwmple random sample of the same number of eclements.

(KiSh, 1965:2568)
A Useful modificatton of this is the 'design factor', abbreviated as
'deft'; and equal to the square root of the design effect. (Verma et al,
1980)
Kish used balanced repeated replication to estimate Deff values from
a4 sample of 2,200 tenth grade boys in fmerican public schools (Bachman
¢t al, 1967) . Deff for sample means was found to be less than three and

lor LOFPCldtlon LOCff]LlCntb and ratlos 1t was found to be about 7 3

A modification of Deming's technique using the range of estimates
provided by four tnudependent samples was uscd by Peaker (1967) in an
international studx of mathc.atics achicvement. He found Deff values of
correlation L0L1t1c1ents ranging from 1.96 (1n Japan where clusters of 10
stidents per school were <elected) to 8:4 (in Scotland where 75 students

per school were selected).

Keeves (Iﬂbb) decompObcd total variance due to classroom and variance
dtie to Students in whit appears to be the first appllcatlon of these tech-

niqunos to Australian cdocational data. He also calculated Deff values of

from 1.00 to 21.3 using a similar method to that of Peaker (1967).

Jackknife procedurcs were used by Peaker 619753 in an international
studv of achlevement ((omber dnd Keeves, ié;gj in wh1ch he found daverage
beff values of 6 for means, 2.5 for correlations and 2 for regre5510n
coefficicnts; the primary sampling unit used was the school.

Ross (1976) used an emplrlcal approach to estimate Deff for sevcral
typtcal sample deslgn< and statistics in common use. Ile found that the
lowest values of Deff occurred for designs that used schools as the primary
sampl1n& unit and also for the morz complex multivariate statistics. A
comparison of these results with Balanced Reneated Repllcat1on and Jackknife
estimates revedled that both tcchniqueq were performlng rea=0nab1y well on
the averagc However he p01nt< out that individually estimates vary quite

considerably from the emp1r1cnlly “derived results,
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CHAPTER 3
DESIGN OF THE STUDY

I.1  lntroduction

The chzpter which follows describes the procedures used to examine the
datua-base and subsequent cmpirizal analySes provide a beénch-mark against
which the technique can be compared. The comparison is in two parts.
Firstly; the Taylor Approximation is compared to the empirically-established
"true' estimates of variance. Secondly, it is compared with two other
single-sample techniques which were inVesfigaféd in the préﬁiéﬂé study.

3.2 A Provious Study

The present study capitalizes on data collected by Keeves (1971) and later
analysed by Ross (1976).

The romainder of the scction is devoted to a summary of this data-base,
uhd the anialyses to which it was subjected by Ross: Further details méy be
found in Ross (1976) and Keeves (1971):

The Data-base: The population under study consisted of 2354 Year 7
students in the Australian Capital Territory in August 1969. This was 95
per cent of dll siich students: datd sets which so nearly encompass a
genuine population are extremely rare in educational research.

The students came from three school 'systems'. System 1 is a collection
of ninc governmont schools with fifty-threéeé Year 7 classes. System 2 is @
coilcttidn oé éOur édtﬁdiic schoois with fifteen Year 7 classes. Syétém 3
is a pair of independent schools with seven Year 7 classes.

Keeves pgathered data on a large range of variables for this population.
Five were selected by Ross for inclusion in a causal model; tﬁéy were chosen
to represent a wide range of types of variable, to provide a range of
magnitudes of the intercorrelations between them; and to constitute a mean-
ingful model of educational achievement. These variables are described in
Table 3.2.1. |

The Causal Model. The causal model used by Ross is an example of the

'Path Analysis' techrique (Duncan, 1975), This technique and its application

to a particular situation could be subjected to any number of criticisms,

16 2
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Table 3.2.1  Mhe Variables in the Ciusal Model

variable name Description
SEX Coded on a two point scale with male = 1, female = 2:
FoLCUP The occupation of the student's father coded on a six

point occupational prestige scale (Broom et al, 1977).

LIKESCHL A 17 item scale designed to measure student's attitude
towards school.

EXPEDN A seven point rating designed to measure tﬁe §tudcnt's
level of aspiration for further cducation:

MATHS A test of 55 mathematics items each of which was

scored: correct = 1, incorrect = 0.

llowever, the model is used in this study merely as an example of the type
of correlational analysis widely used in educational research.
The model investigates the relative influences among the variables

under the assumption of a certain ordering of causality:

1] Antecedent student characteristics influence

2 Attitodes toward school and these characteristics and attitodes
influence

3 Aspirations towards further education and these characteristics,
attitudes; and aspirations influence

4 Achievement in Mathematics.

which may be shown to be equal to standardized regression coefficients
(Kerlinger and Pedhazur; 1973:310-14). The first stuge in this causal chain
consists of variables for which it is assiimed that causes outside the model
completely determine variability. At each subsequent stage it is assumed
that causality is unidirectional; that is, no variabie can be both cause
and effect of another. A residual variable is included at each stage to
account for all other sources of variation (these are referred to by lower-
case letters a; b; ¢, etc.). It is assumed that a residual variable is
neither correlated with other residual variables nor with the variables
in the modei to whicﬁ it is not éttécﬁCd.

The model is illustrated in Figure 3.2.1. In interpreting correlation

cocfficients and path cocfficients associated with this figure it should be
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FOCCUP |

a’:::si LIKESCHL |

EXPEDN ﬂ

ﬁigUrc 3:2.1 The €ausal Model

so that a high score on this variable assigns a low relative rating on
the scale of occupational prestige.

The Sample Designs. In order to establish the effects of different

sampling strategies, Ross chose five sampié désigné and drew; from the
population described above; twenty-five samples of 150 students according
to cach of the sample designs. Samples of size 150 were deemed appropriate
Firstly s this is large ecriough to achieve stable estimates of the amalytic
statistics used in correlational analyses involving a 'medium' number of
variables, and secondly 45 an ¢xamplé of the research designs which would
Be Withih tﬁe ecoﬂbmic nnd édminisfratiVé resources of the fyﬁiéél educat-
fonial research worker: Twenty-five replications were considered sufficient
to establish reliable empirical data for the éampling distributions of the
Vﬁriohé stdtistics associated with the causal model. The five éémﬁiiﬁg
designs are described below: _
Design 1:  Simple random sample of 150 students (SRS designj.

Each sample is a simple random sample of 150 students from the entire
population.
Design 2: Stratified proportional simple random sample of 150 students

(STR design).

18
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Table 3.2.2 Cnﬁprjbuﬁion of Lach Strarum to the STR Beéiéﬁ

Number_of Proportion NQMbgjwqf ftdportion
students in of . students of
Stratum population population in sample sample
! 1611 0.684 103 0.687
2 539 0.229 34 0.227
3 204 0:087 13 0.086
Total 2354 1:000 150 1.000

The strata chosen were the three school systems. Each stratum
contributed to the sample in proportion to its size within the entire
population; and within each stratum an independent simple random sample
of students was chosen. The number of students from each stratum is

shown in Table 3.2.2.

Deusign 3: Probability proportionud) tc size selection of six primary
sampling units (schools) followed by simple random selection
of twenty-five students within each selected cluster (SCL design).
The fifteen schools were each allotted probability of selection
according to their size, then six were chosen, without replacement,
dccording to these probabilities: Within each school chosen, twenty-five
students were sclected as a simple random sample.
Design 4: Probability nroportional to size selection of six primary

sumpling units (cldsses) followed by simple random selection

The sampling frame was first rearranged so that no class was smaller
than twenty-five. Small classes were amalgamated to form 'pseudoclasses’
and the sume process was applied to these 'pseudoclasses' and to the larger
classes as was applied to the schools in the SCL design.

Design 5: Stratified cluster sample of 150 elements with two primary
sampling units (classes) being chosen from each stratum with
probability proportional to size selection followed by simple
random sclection of 25 elements within each selected cluster
(WD design).

19
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Table 3.2.3 w?ﬁﬂbffi Uscdf}n~thc—WiDmDesign

Number of . Number of
o students in students in
Stratum the stratum the sample Weight
(h) (N (n.)
1 1611 50 2.053
2 539 50 0:687
3 204 S0 0.260
Total N = 2354 n = 150 3.000

The sampling frame was first rearrang~d as for the CLS design. The
same teCﬁhiQUeﬁ were then appiied to the set of classes and ;pSéudotiESSes'
within cach stratam as were applied to the SCE design, but only two
selections were made. As this results in fifty students being selected
from cach stratum, the data for cach student selected was Weighted in
proportion to the sizec of the stratam from which it was selected.

If N is the population size

n is the total sample size
ny Is the size of stratum h in the population
then the weight for stratum h is

is the size of stratum h in the population

noL M
Wh =Y ﬁ;' (Kish,; 1965:429)

Table 3.2.3 details the calculation of these Wéigﬁté for éétﬁ stratum,
(Note that for the other four sample designs each element of the population
has the same chance of being seclected; and hence, no weights were needed.)

The Sampling Error Formulae. The statistics chosen for study were:

thHe Mean, the Correlation Cosfficient; the Standardized Regression Coefficient

and the Multiple Regression Coefficient. The sampling error formulae
appropriate for cach of these statistics under simple random sampling is given
in Table 3.2.4. All except that for the Correlation Coefficient are standard

results. For that statistic however, the more usual sampling error formula is

Qa-r’y/vm

Qb
-
It

20
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Table 3.2.4 Sampling Error Estimation Formulac Used to Estimate the
Denominator of the Equation which Defines the Design Effect

Sample statistic Estimation formula
: - i _ s e
Mean (X) og 7? {Guilford and Fruchter;
1973:127)
Correlation coefficient (r) 8; = jé (GUiifOré and Fruchter,
n 1973:145)3
S ] 1 hZ .
Standardized tegression S 1233w
coefficient (b) D012 7 - :
(I-RZ.SZ...m)(n-m)
(Guilford and Fruchter;
1973:368)
Miltiple correlation 6y = —— (Guilford and Fruchter,
coefficient (R) /yncm  1973:367)b

This formula was not used (a) becausc we wished to provide the reader with
an example of how to use this technique in the relatively simple problem of
testing whether the Correlation Coefficient is zero (for this test one
assumes that r vanishes in order to cal:ulate the sampling error and so the
above formula reduces to the one giVen in Table g.é.ij and tbj becduse
there is some debité ovér the utility of this formula when r is small

(See McNemar; 1969:155) which is the case for several of the correlations
under investigation.

Results and Conclusions. Ross used the values of the square root of

the Design Effect, 'deft' to measure the sampling errors. The equation
defining this statistic is
deft = _C

~

Csrs

where Sc is the estimate of the standard deviation for the statistic
ana complex sampling design under consideration

and asrg is the estimate of the standard deviation for the same
statistic which would be obtained if simple random sampling

formulae were used.
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The estimate o was, of course, onc of the goals of Ross's study.
The formulac Ross used for 6§fs were derived from one source (Guilford
and Fruchter, 1973), ind are detailed in Table 3.2.d. The formulde apply

the variable X has a standard deviation of s. The multiple correlation
cocfficient R1 23 n refers to the regression cquation which has
viriable 1 ds the criterioi and viariables 2; 3, ... m as the predictors.
The vilies of the square root of the Design Effect (deft) for each
statistic averaged over the twenty-five replications and for each of the
five sample designs were calculated by Ross.
From this evidence Ross concluded that

the use of complex sample designs to gather data may

greatly influence the sampling stability of the statistics.
réquired to describe a recursive causal model. (Ross, 1976:45)
Ross also calculated the values of deft given by two of the single-
sample techniques using one sample for each. Balanced Repeated Replication
wias used with the WID design, and Jackknifing was used with the CLS design.
From these two cases Ross concluded that both techniqr2s provided
'useful estimates of average VDGff'.
3.3 The Estimition of Sampling Errors from Single Samples Using a
Taylor Approximation

order to cstimate sampling errors. The process was repecated twenty-five
times for cach design to obtain a reliable guide to the behaviour of the
estimate. The procedure followed is described in the remainder of this
scction, the results obtained are discussed in Chapter 4. Details of the
application of the somputer program may be found in Wilson (1981).

Variance Estimators for the Sample Designs. As mentioned previously,

a Fortran subroutine providing an estimate of the variance of a total must
be supplied to the program. The formula for cach of the five sampling
désigns is given below: Let U be the statistic under consideration:
SRS Design
Let u; be the obscrved value of the statistic for the it element
f be the total sampling fraction
n be the nurber of elements in the sample

t be the mecan of the u;'s



Then the variance of the Statistic U i5 estimated by
o .0
var (U) = (1 - i)—~—— 2: (U - u)

(Woodruff and éﬂusey, i976j

Jfﬁ bcsign
Let h=1,2 ... ll be the struta
dhi be. the observed value of the statistic for the
ith element in the h* th stratum ]
i bo the sampling fraction in the h'! stratam
h be the number of elements sampled from the B stratum
u: be the mean of the uﬁ—'s for the h° th stratum
wh be the proportlon of the populatlon in stratum h
Thon the Varidncé 6f the statistic U is estimated by
,, 7 /0 N
o n / 'h '
- _ c 2, N—h] S - =32
var (U) = & W - £ ) }:,(uhi - G)°
h=1 h \ i=1

(wOodruff and éaasey, 1976j

5CL and CLS Designs

The most approprlatc estimator for thesc two designs would be one wh1ch
took into consideration the use of probablllty proportlonal to size
selection and the ase of selection without replacement at both stages of
the two-stage de51gn Such an estimator is described by Sukhatme (1954
410). However, this estlmator 1nvolves the use of the probabllltles of
scloctisn of the primary sampling onits, and of the joint probabilities

of selection of palrs of sampllng un1ts ThlS proved tractable though

busy computer 1nstallat10ns meant that the job would never be finished.

This problem is mentloned by Sukhatme who suggests that

. the use of the estimate approprlate for sampllng with
replacement, introducing the usual finite multiplier for
calcu}atlngrthe érror variance, is probably sufficiently
satisfactory. (Sukhatme; 1954:415)

As this i5 the procediire most research workers would follow in any case

if was dééldéd fﬁ héed Sukhatme's advice.
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As the two designs are exactly the same apart from the size of the
clusters UScd, i nnificd account is gich Bciow;
Let w; be the number of elements in the it cluster
ﬁo be the number of clements in the whoyle sample
n be the number of clusters sampled
f  be the overall sampling fraction
u be the mean valme of the statistic in the ith cluster
t  be the mean of the ﬁi's
Then the variance of the statistic U is estimated by

o2 .
o N _m noo .9
Var (U) = (1 - f)——s< 2: (u: - )
(n-1) T
(Sukhuatme, 1954:363)

WID Design
For this design u version of the previous estimator could be applied within
strata and then added across strata to obtain an estimate for the population
viaridnce. llowever, when this wis dttempted, the results proved extremely
unstable duc to the presence of only two clusters per stratum:
the variance estimator for the CLS design, or ignore the clustering and
usc the vidriance estimator for the STR design. As the effects of cluster-
irg had atready been investigated for two different designs, it was
decided to pursue the latter strategy. Thus the variance estimator used
wis thit described for the STR design, with the statistics u,; and Gh

repliaced by the appropriate weighted statistics o and s



CHAPTER 4

RESUETS: ‘IHE PERFORMANCE OF THE WOOQDRUFF
TECHNIQUE FOR ESTIMATING SAMPLING ERRORS

hi this cliapter are discussed the performances of the Woodruff technique;
as applicd in the Woodruff-Causcy program, as regards the eéstimation of
sampling errors for the five Jcsighs and USing the five variance
Estimitors deseribed in the previoas chapter: The first section discusses
the cvaluation techniques used, the sccond examines the results for the
SRS design, the third examines the results for the stratificd designs and
the fourth examines the results for the clustercd designs: The fifth
section compares these results with those obtained in a previous study,
and the final scction is a Summary of these results.

d.1  The Evdluation chhniqﬁcs

In discussing the cffects of sample design, three types of evaluation
procedures were uscd. The first measures the relationship between the
estimates of sampling crror cbtained from the Woodruff-Causey program and
the 'tric' sampling crrors which were derived empirically. The second type
of cvdliition relatcs to the internal consistency of the sampling error
estimates which were vbtained from the Woodruff-Causey program. The third
type of eviludtion investigites the extent to which the stiidentized ratios
are distributed as a 't' - statistic around their mean, which bears upon
their uscfulness for hypothesis testing.

Design Effect. In order to establish a criterion for bhooéing between
Snmpic Jcsighs, Kish introduced the word ;befé', derived from 'désign
cffect', to name

the ratio of the actual variance of a sample to the variance of
a simple random sample of the same number of elements (Kish,
1965:258).
Thus; if an estimator u, of a population paramc¢cer u, is used under a
compiCi sampiing dcsign é, then a measure of its e%ficiency is
var (4) -
Deff (0;0) = — S 1)

var (usrs)



Table 4.1.1  Population Values for the Statistics Used in the Study

Statistic Popuiation Value

Means: SEX 1.4731
faccup 3.1175
LIKESCHL 21:3732
EXPEON 4.2840
MATHS 29,5415

Correlation Coefficients:
SF -0.01123
st 0.14908
SE -0.09723
SM -0.07560
It -0.13988
FE -0.41609
Ty -0.37256
LE -0.39518
LM 0.21185
EM 0.51094

Path Coefficients:

SL R 0.14752
SE -0.15609
SM Z0.04150
FL -0.13822
FE . -0.36648
M , 20.19684
LE 0.36719
LM 0:02672
EM 0.41444

FMitipie Corrciation éoefgiciéntéz

LIKESCHL 0.26329
EXPEDN 0.55926
MATHS 0.54211
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where &b indicates that the estimator is applied with the complex sample

desipn whercns u Srs indicates that a slmple random sample of the same

size was used. Note, “hat Deff is dcpcndent upon both the sample de51gn
did the estimator . Usually the relevant de51gn dnd estimator zrc obvious
and the nrguments are left out.

As the discussion of the cffects of sample design is usually couched
in terms of sampling errors rather thun sampling variance, a more

appropridte criterion is the design factor or 'deft' which is defined by

doft (8,0) = VOeFF (0,C) (Verma et al, 1980) (2)

Rosn (1976) made all his comparisons using this measure. It has been
p01nted out that deft appears less sensitive to sampling errors than Deff
(Kish, 1969 : 434)

Tii the interests of obtuining some stability in deft values; Kish
and Frankel (1970:1092) recommend that particular values of deft be obtained
for each instance of cach type of statistic and that the averqge of these
vialues should be reported as deft. Of course, stch an averaging process
must be confined to partjéular types of statistics due to differences in
units of measurement; sample size; and differences in the varjances of the
varihtés inVolVed in Chicuidting tﬁe estimator.

The 'true' values of the various statistics were found using the SPSS
collection of programs with 'list-wise' deletion: This means that the
pOPUL1t10n pdrameterq are 511ghtly different to those quoted in Ross's
study, this is not a problem as all the most 1mportant comparlsons to be
made were based on fresh samples: These values are given in Table 4:1:1
and will, for the purpose of this Jnvestlgatlon be cdnSidéréd true
poruldtlon parameters. The multxple correlation coefficients in this table

are named by the criterion variable for the appropriate regression equation:

Calculation of design effects depends upon finding a good estimate of
the standard error which would obtain under 51mple random sampllng with the
same number of sample cases as was used in the complex samplc The formulae
used to calcutate these simple random sampiing standard errors were the
same as those used by Ross (1976:29-30) which were detailed in Table 2.2 .4.

In using these formulre, an estimate of the mopulation standard
deviation for sach variable, and of the relevant Multiple Correlation

Coefficients was found using the entire populatlon The formula standard

error was then found using the appropriate number of sample cases.
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This provides a 'best estimate' 5f the standird deviation that would be
obtiined tiom @ simple random sample. In practice; a researcher would
atmost always have to use the sample obtained by the complex sampling
process to estimate 65}5‘ Such estimates would vary greatly depending
on the particular sampling scheme in usc. Use of the 'best estimate’
provides a stable standard against which to compare both the empirical
and the cstimated standard errors of the complex designs:

These concepts were implemented according to the follewing formulae:

- . N P ~ 1 p e p S L. . - sth oo
If fi is the estimate of the function f resulting from the i sample,

then the averape, f, is given by

1J

é—— -
" €3)

t

M

-
n
n

—

1y
al

and the empirical estimate of the standard deviation, ".; is given by

-

25 5 a5 L
Yy f.° - 25f° C)]
e i -
i=1

Furthermore, if f is the 'true' value of the function (i.e. that derived
from population data) and éf is the simple random sample standard deviation

derived from the formulae in Table 3.2.4., then the bias of f is given by

bias (£) = f - f €5)
the Mcan Square Error of f is given by
M:S:L. (f) = [bias (£)]° + (sf) (6)

and an empirical estimate of deft is given by

5f (7

deft (F;;€) =
3 5

wherc C denotes the compléx sampling design under consideration. In
addition, the 'deft error' was also calculated; by this ismeant, the
percentage error incurred b; assuming that deft equals one; that is;

afe ameen o 1= deff &

deft error = deT x 100 (8)
Thus; @ deft error of -26.43% indicates that if one used the simple random
sampling version of the sampling error, one would be using an error estimate
which was 26.43% below the correct figUre;
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Recoirse to @ table of the probability distribution of Student's 't’
statistic on the uppropriiute number of degrees of freedom: (for example,
Pearson and Wishart; 1947:118-119) will then provide an interpretation of
this error ih terms of true and apparent confidence intervals.

These vﬁiqu were then compnrcd with the Woodru%f~éauSey estimated
standard errors in the following way:

[f s, is the i'" cstimate of the standard error of Function £, then

fi
the average standard error is simply
25
S.o= iz M €9
£ 75

the ith estimate of deft is gian By

oA o sfi -
deft (f,,0) = =—— (10)
1 Sf

and the average deft is

25 N .
. > deft (f.,C) ,
dert (F,€) = i=1 _ i (1
75

A percentage error involving this formula was also calculated using the

‘ormala
e _ deft - deft . .
deft error = T x 100 (12)

where deft refers to the empirical valué and deft refers to the avérage
estimated deft for the function f.

Relative Mean Square Error. The¢ internal consistency of the Woodruff-

éaUSey ¢stimates of Standard cérror was investigaféd using the foiiowing
statistics.

If 5., is the i™" cstimate of the standard error; and &g is the
averiage over the és sampies, the standard deviation OE the standard errors

is given by

se.dev. Gp = [ ( & (sp)7 - 25057 (13)
the bias is given by
bias (3) = &, - 5 (14)
29
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and the Mean Square Error it given by
er rzoe = e - .2 L
M:S:E: (Sf) = |bias (sf)] +  [st. dev. (s?)] (15)
As these stitistics gain meaningfulness only by comparison with thc
variability of the original Functlcn, f, and in order to allow comparison
across function which have different mdgnltudes, the Relative Mean Squqre

}Lror was quo cn;culared

MST (5 )
I aMEE o £
RELMSE ($:) = ——=f—
(s3) (§:)2 (16)

{
This can be broken down into tio werms; Relative Bias, and Relative
Variance given by

[bids FE?Jj"

RELBIAS (§7) = ——s———o .

£ .2
(s¢) (17)

S
- 3
L fst. dev. (s.)] o
KRELVAR (52) = d (18)
f ' )2
(5¢
Of cotirse, RELMSE = RELEVAR + RELBIAS.

These statistics were those used by Frankel (1971:61-77), except that
Ye investigated the variance rather than the standard deviation. In
concordance with the use of 'deft' father than 'Deff' it was decided that
mcasures of the internal Cbhsisténcy of the standard error were more
appropriate in this investigation.
Student's t . ‘The third type of evaluation also follows the lead glven
by Frankel (1971). Fhere he examlned the assumption:
Tho distribution of the ratio of the first-order estimate minus.
its expected value, to its estimated standard error is reasonably
approximated by gtudcnts' + within symmetric intervals:
(Frankel; 1971:78).
This 1s>umpt10n is crucial to the 1nLerpretat10n of the sampllng errors
derived from the Woodruff- Causey program. If the assumpflon s tenahie,
thei credible inferences using the t-distribution can be made from the
samples; if tre assumptlon is not tenable, then the standard errors could
still be utilized in a Tchebytchev - type inequallty, but such results

would pe extremély conservative.
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Toble 4.1.2  Proportion of Students't Within Selected Intervals

Dégrécs of Frecdom £2.576 £1.960 £1.645
3 0.9196 0.8549 0.8124
a 0:9384 0.8782 0.8244
5 0.9503 0.8925 0.8502
& (Standard 0.9900 0.9500 0.9000

normal case)

Note: These proportions were (where necessary) calculated by linear
interpolation from a table of the probability integral of
Students' t in Pearson and Wishart (1947:118-119j.

The invéstigation consisted of finding the propertion of times the
ratio

oot

—_ (19)

Sti

fell within the intervals (-2:576, 2.576), (-1:960, 1:960) and (-1.645;
1.645). These proportions were then compared to those predicted by
'Studenit's t' oii an ﬂpprbpriate number of aegreeé of freéaom.

Table 4.1:2 givas the Student's t proportions that were used gor
comparison.

For the non-stratified designs using a simple random sample variance
estimator, the approprinté number of degrees of freedom is the number of
sumple cases minus onc. Stratified designs usually take the number of
cases minus the number of strata; but the presence of unequal stritum
sizes and of weighting make this only an approximation. Frankel, invest-

fgating a series of designs iivolving many strata, but only twWo cases per

the number of strata; this point is discussed in Section 4.4 (Frankel,
1971:79) ;

For the Jackknife variance estimator the appropriate number of degrees
of frecdom is onc 165§ than the number of distinct pscudovalues (Mosteller
and Tukey, 1977:36). For all the Jackknife examples used in this study,
there were six different pseudovaluex; so the number of degrees of freedom
was five. For the Balanced Repeated Replication variance estimator; the
number of degrees of freedom was feur. For the variance estimator used in
the SCL and CLS designs the number of dégr?es of freedom is the number of

clusters minus one; in this case; five.

3
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Table

.

Average 'N' was 145.80

4.0 Average Deft Estimates for cach Statistic

Function

Empirical

Means:

SEX
FOCCUP

1L IKESCHL
EXPEDN
MATIIS

0
1
1
5

L0057
19423
.1018
.0507
18741

Correlation Coefficients:

Path Coefficients:

Multiple Correlation

SF
Sl
Sk
SM
L
FE
M
LE
IM
EM

Sk
SE
SM
FL.
IE
FM
LE
LM
EM

LIKESCHL
EXPEDN
MATHS

0

— O =

O Ol — O O o

—

O = e O

0
0
0

.9787
.7320
8421
L1150
.0966
17693
L8022
.0302
19649
L7169

.7524
.8634
. 1406
21320
;1493
.9582
1172
0471
.9078

.8662
16620
.6756

Coefficients:

- ~_ Percent error Percent error
Bstimated ~of estimator  of formula
0.9691 -3.6 -0.6
0.9593 1:8 6.1
0.9610 -12.8 -9.2
0.9842 6.3 -4.8
0.9629 10.2 14:4
0.9667 1.2 2.2
0.9325 27.4 36.6
0:9610 14.1 18.7
0.9486 -14.9 -10.3
0.9003 -17.9 -8.8
0.8174 6:3 30.0
0.8170 1.8 24.7
0.8266 -19.8 -2.9
0.8917 -7.6 3.6
0.6826 -4.8 39.5
0:9295 23.5 32.9
0.9368 8.5 15.8
0.9068 -20.5 -12:3
0:9008 -20:4 -11.7
0.9367 -18.5 -13.0
0.9530 0.5 4.4
0.9695 -13.2 -10.5
0:9413 -10.1 -4.5
0.8836 22,7 10.2
0:8852 2.2 15.5
0.6371 -3.8 31.1
0.6246 7.5 48.0

Note:

Values recorded
corrections for

in columns 1; 2 and 4_could
caseés where v # 0 or R # 0.
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4.2 Results for the SRS Design
The nppiicntioh of the Woodruft technique to this d051gn may seem super-
fiuous, after all; estimators for sampling errors for this de51gn are well
establisted, The investigatldn is importaﬁt however; firstly because it
provides a bench-mark against which to compare the results for all the other
sample designs, and secondly because the 'formula! §5mp1ing errors quoted

in Table 3.2.4 drc all dependent upon some sort of normal-distribution
dssumption. This mdy not be appropriate: In addition, it stould be noted
th:t the formulae in Table 3.2.4 are apprcpr11te for sampllng with replace-
ment from infinite normal populatlons The methods used in th1s 1nvest1gat10n

rclate to sampllng from f1n1te populatxon% without repldcement

The average of det for cach of the statistics is given in Table
1.2.1. The first column gives the emplrIcal values of deft obtalned from
the 25 simulations. The degree of variation from 1 1n61cates Just how
tenable was the 'formula' standard error; the emplrlcal vialues range from
0.56 t6 1.14 which indicatcs that the non-normal nature of the distributions
of the variables is having conslderdble influence on the sampllng errors of
the statistics. The second column gives the estimated value of deft given
hy 25 nppiitati0n< of the Weodruff technique. It is striking that; except
for the Multiple Regression Coeff1c1ents, the values in this column show
much less variation than those in the previous column

this in itself is not éitdgether a prohiem; if one is concerned
primarily with the quality of the approximation for each of the statistics,
it is worrisome. However, if the aim is to arrive at a reasonable deft
estimate for each type of statlstlc, it need not be a problem at all;

KlSh hhd Frunkel (1970‘1097) recommend éxactiy this latter course, and in
the main, their advice is hereby adhered to although in some cases comment
is made on individual statistics. The thlrd column glves the error in the
deft estimate relative to the émpiritnl deft. The worst error is 27% for
the correlation between SEX and LIKESLHL The final column g1ve> the error
involved in using the ‘formula' version of sampllng erroy (that is, assuing
that deft is ij relative to the empirical situation. The worst errors in
this column are, for individual statistics, considerably worse than for the
previous colunn,

Thé information contained in 4.2.1 is summirised by type of statistic
in Table 3.2.2. The Woodruff technique is providing a slight undercstimate

of deft that is no more than 10 per cent in error. The 'formula' estimate
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Table 4.2.2  Averiage Deft Estimates (SRS samples)

Avcrape IN' was 14580

Percent error Percent error

Statistic Empirical Estimated of estimator of formula
Means 0:9949 0:9673 -2.8 0.5
Pr Correlation Coeff. 0.9048 0.8744 ~3.4 10.5
Path Coefficients 1.0076 0.9287 -7.8 -0.7
Mult: Corr: Coeff. 0.7346 0.7157 -2.6 36.1

of deft is relatively better for the Means and the Path Coefficients and
relatively poorer for the Corrclation Coefficients and the Multiple
Correlation Coefficients. One way of assessing the importance of these
errors is *o examine the real meaning that 95 per cent confidence intervals
would have if these erroncous deft values were used: Table 4:.2.3 gives

the prbbﬁbility of an incorrect statement if a two-sided 95 per cent
confidence intchﬂi is used: the probﬁbiiity Sﬁbuia BC 6.656. %ﬁe
'formula' standard error for Maltiple Correlation Coefficients is foand to
be very conservative; but all the rest would most probably be acceptable

to most educutiondi researchers.

Table 4.2.3  Probability of an Incorrect Statement About the Statistics

in the SRS Design

Probability of incorrect 7
statement when a two-sided
95% confideénce interval is
to be used.

Statistic 'formula' Woodruff estimate
Means 0.049 0.057
Correlation Coefficients 0:030 0.058
Path Cocfficients 0.052 0:069
Multiple Correlation Coefricients 0.008 0.056
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Table 4:2.4  Average Biuas and Variance Contributions to the Retative Mean

Square Errors for the Statistics in the SRS Design

Stdtiétic ﬁeiétive ﬁgia;iyé ééiaﬁivg Mean
Bias Variance Square Error

Mcans 0.006 0.9002 0.008

Correlation Coefficients 0.020 0.004 0.025

path Cocfficients 0.023 0.004 0.028

Multiple Corrclation Coefficients 0.002 0.012 0.015

iﬁbie 4;
RELMSE for th

stable for the first three statistics, not ranging above one part in a

2:4 gives the contribiitions of the Bias and the Variance to

e statistics under study. The variance contribution is very
hundred. Thus the variance estimator is about 1 per cent as variable as the
statistic itself: For some individual statistics the Bias component is
smaller than the Variance component; but on average, for all three types of
statistics, the Variance component is much smaller than the Bias component.

For the Multiple Correlation Coefficient the situition is reversed
witﬁ tﬁe per?ormuncc of tﬁe estimétor reVCaiihg quifé a bit of variabiiif&,
but on the average settling down to a good estimate. This contrary
behaviour is echoed in the other designs.

The proportion of times that the 't' ratio falls within certain
intervals for each type of statistic is given in Table 4.2.5: The
appropriate number of degrees of freedom in 145 which is approximated by
the entries foi infinite degrécs of freedom in Table 4.1.1. The results
ire tolerably close to the theoretically correct proportions except for
the Path Coefficients which scem  slightly more spread out than a true

t-distribution.

wes that i1! Ratio Falls Within Selected
intervals (SRS samplos)

%nbie 3.5.5

Statistic + 2,576 +1.,960 +1.645

Means: 0:992 0.936 0:872

Correlation Coefficients 0.984 0.944 0.896

Path Coefficients 0.978 0.933 0.853

Multiple Correlation Coefficicnts 0:973 0.947 0:893
35 4;
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Table 4.3.1 Kveragé Deft Estimates (SCL sampiesj

Average 'N' was 145.00

Percent error

Statistic Empirical Estimated of estimator
Mcans 1.4973 1.8113 21.0
Correlation Cocfficients 1.0098 0.9676 -3.2
Path Coefficients 0:9998 1.0022 9:2
Multiple Correlation Coefficients 0.6782 2.6529 291.2

4:3 Results for the Clustered Designs: SCL and CLS

As those two désigns are identical except for the relative sizes and
niture Gf the clusters, their results are best considered together: Deft
estimites for the two designs are listed in Tables 4.3.1 and 4.3.2: one
is immediately struck by thé huge ovérestimate for the Multiple Correlation
Coefficients. The other statistics seem to be reasonably well estimated.
Correiation Cocfficients just a 1ittle worse than thosé for the SRS design.
Note that the basis of the calculation of these probabiiities is different
from that used for the previoas design as there is now only five degrees of
freedom involved in the variance estimatisn formula.

Onc way of considering these results is to calculate the reffective
sample éize’ ?or the two desighs tkish, iééé:éééj. This is the size of a
simple random sample over the same variable which would give standard

If the population size is large compared to the sample size n, then the
cffective sample size n* is given by

n

beff

Using this formula, the effective sample size for the Means in the scL

n* =

design is approximately 65, and for the CLS design, it is approximately 30.

This certainly provides grounds for explaining the lowered perforponce of-

- ke HoobTatt estimator in the case of Means. Unfortunately no such formula
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Table 4.3.2  Average Deft Estimates (CLS samples)

Average 'N' was 144.9¢

Percent error

Statistic émpirichl EStiméted of estimacor
Means 2.2068 2.4424 10.7
Correldtion Coefficients 1:2173 1:1047 -9.3
Path Coefficients 1.1664 1:0739 -8:0
Multiple Correlation Coefficients 1.1080 3.4081 207.6

is available for the other statistics; although one might speculate that
n* for the more complicated statistics would bé closely related to n* for
the means: If this is truc then perhaps an explanation could be put forward
for the poor behaviour of the estimator in the case of the Multiple
Correlation Cocfficients on the grounds that, with an effective sample size
of 65 or 30, Multiplc Correlation Coefficients themselves have little
meaning or stability; and hence, the calculation of sampling errors is not
warranted.

The bias and variance contributions to RELMSE are given in Table 4.3.4.
The situation as for defts is reflected here: the results for the
statistics other than Multiple Correlation Coefficien.s are reasonable but

not so gdod as for the SRS design, and the? are generally similar for both

Table 4.3.3 Probability of an Incorrect Statement About the Statistics
in the .SCL-and CLS Designs

Probability of incorrect
statement when a two-sided
95% confidence interval is
to be used

Statistic SCL desipgn CLS design
Means 0.027 0.036
Correlation Coefficients 0.057 0.067
Path Coefficients 0.050 0.064
Muifipie Correlation Coefficients iéo_dbi iib.bbl
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Tuble 4:3:1  Bias and Variance Contributions to the Relative Mean Square

irror for the Statistics in the SCL and CLS Designs

Relative Relative Relative Mean
Statistic Bias Variance Square Error
SCL Means 0.111 0.165 0.275
CLS Means 0.030 0:094 0:125
SCL Correlation Coefficients 0.020 0.094 0.114
CL5 Correlation Coefficients 0.021 0.100 0.121
ééL ﬁhtﬁ Eoefficiehts 6;613 0.098 0.111
€LS Puth Cocfficients 0.011 0.096 0.107
SCL Multiplc Correlation 12.6 3.8 16.2

Coefficients

CLS Multiple Correlation 7.8 2.5 10.2

Cocfficients

designs. The size of the RELMSE for the Multiple Correlation Coefficients
implies that no credence could be given to the values obtained.

Table 4.3.5 gives the propertion of times that the 't' ratio falls
within certain intervals for each type of statistic. The appropriate
number of degrees of freedom is 5 and the theoretically correct proportions

are given in Table 4.1.1. The Multiple Correlation Coefficients do not

Table 4:3.5 Proportion of Times that 't' Ratio Falls Within Selected

Intervals (SCL and CLS samples)

Statistic $2.576  *1.960  *1.645
SCL Means 0.976 0.904 0.848
CLS Means 0.968 0.920 0.888
SCL Correlation Coefficients 0:952 0:.904 0:840
CLS Correlatioh Coefficients 0.932  0.856 0.796
SEL Path Cocfficients 0.960 0.916 0.880
CLS Path Cocfficients 0.960  0.876 0.804
SCL Multiple Correlation Coefficients 0.88 0.856 0.827
éLS Muifipie Correlation Coefficients 6. 0 b.ééé d.éé;

38

O

ERIC

Aruitoxt provided by Eic:



Table 4.4.1  Average Deft Estimates (STR samples)

Average 'N' was [44.50

Percent error

Statistics Empirical  Estimated  of estimator
Menns 0.;3i§ 6.5655 -éﬁ.i
Correlution Coefficients 0.7700 0.5120 -33.5
Path Cocfficients 0.8532 0.5446 -36.2
Multiple Correlation Coefficients 0.7203 0.6527 -9.4

secm quite so disastrons in this table, but in fact the averaging process
has concealed threce extreme results. The other statistics seem to be
@iving a reasonable approXimation to a 't' distribution with the case of
the Correlation Cocfficients in the €LS desigm being more spread out than
the rest.

4.4 Results for the Stratified Samples: STR and WID

The deft cstimates for both these designs are given in Table 4.4.1 and
1.4.2.

For all cdscs but oné the WoodrUff estimator is considerably lower
than onc would wish. When this is converted to a probability statement in
Table 4.4.3 the interpretation is clear. With the possible exception of

Multiple Correlation Coefficients, the Woodruff estimator is considerably

biased: These calculations were carried out on the assumption that the
appropriate number of degrees of freedom was the number of samples cases
mifiis the number of strata; this is the way that Frankel calculated degrees
of freedom in his study (Frankel; 1971:79). He expressed the situation as
'the hypothesized degrees of freedom are H, the number of strata ..' which,
as he was working with only two cases per stratum works out to the same as
the usual formula. Suppose however that the quoted hypothesis were correct
no matter ﬁow many cases there were in each stratum. If this were true,
then the i -“babilities would have to be recalculated on the basis of only
three degrees of freedom. This has been done and the results are shown in
parenthesis beside the original figures in Table 4.4.3. These latter
results are more reasonable than the former, but are étill not very

encouraging:
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Tabic 4.4:2 Ayefdge"Defﬁ Estimates (WTD samples)

Average 'N' was 140.08

Percent error

Statistics Empiricéi Estimated of estimator
Mcans 2.6408 1.0809 -59:1
6orrciati6h Cdéfficiehfs i 4477 1.0084 -30.3
Path Coefficients 1.4680 1.0428 -25.0
Multiple Correlation Coefficients 1.2249 1.3317 16.9

Aﬂ alternative explorat1on of these poor STR results is to cons1der
Tible 3.2.3 indicates that 103 cases from stratum 1 were used, 34 from
stratam 2; and only 13 from stratum 3. When using the Woodruff- CaLsey
program in its stratified mode, separate estimates of all the der1vat1ves
Zre made for each stratum for each relevant variate. There is onIy one
such variate for each of the Means, but there are five for each of the
Correlation Coefficients and up to 20 for the Path Coefficients and
Multlple Regress1on Coefficients. It would seem a dubious pract1ce %
calculate 20 derivatives from as few as 13, or even 34, cases. One solution
to this problem would be to run the program in its population mode, mak1ng

approprlate corrections to the variance subroutine.

Table 4.4.3  Probability of an Incorrect Statement About the Statistics

;n;%he;SlR;andAWIDADeS}gns

Probab111ty of 1ncorrect

confidence interval is to be used

Statistic STR design WTD design

Means 0.137 (0.095) 0.422 (0.283)
Correlation Coefficients 0:i93 (0:125) 0.173 (0:113)
Path Coefficients 0.211 (0.135) 0.164 (0.109)
Multiple Correlation Coefficients 0.076 (0.063) 0.022 (0.034)

Note: Results calculated on 3 degress of freecdom are in paventheses.
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Table 4.4.4 Bias. and Variance Contributions to_ the Relative Mean Square

trror for thcrstutistics in the STR and WTD Designs

A Relative Relative Reiativeﬁﬁean
Statistic Bias Variance Square Error
STR Means 0.069 0.001 0.01
WTD Means 0.308 0.003 0.311
STR Correlation Coefficients 0.116 0.003 0.119
WTD Correlation Coefficients 0.102 0.008 0.110
STR Path Coefficients 0.:32 0.004 0.135
WTD Path Coefficients 0:088 0:012 0:100
STR Multiple Correlation 0:297 0:091 0.388
Coefficients
WID Muifipie Correlation 0:510 0.354 0.865

Coefficients

For the WID sqmple de51gn there were 50 cases for each stratum. This
may well be insufficient for good results. The effect of the we1ght1n0
process on the Woodraff- Causey program may also be quite negative. However;

t.  evidence is insufficient to make any firm conclusions.

The relative contributions of bias and varidnce to RELMSE are glven
in Table 4.4.4. The variance contrlbutlon, excépt for the MuItIpie
Correlation CoefficrentS' conform to the pattexn of the SRS sample, whilst
the bias contributions are qu1te uniformly high. The h1gh variance
contribution for the Multlple Correlation Coefficients is an infteresting
counterpoint to the relative accuracy of the deft estimates.

Tlie proportion of times that the 't' ratio falls w1th1n selected limits
is given in Table 4.4.5. The STR results here bear out the speculatloP that
the approprlate number of degrees of freedom could well be as low as three.
There seems to be no recognizable pattern to the WTD results. Once again
the Multlple Correlation Coefficients successfully avoid f1tt1ng what

little pattern does emerge here.

The poor results for multlple correlation coefficients were not
uncxpected. The simulation study by Frankel (1971) also produced poor
sampiing érror estimates for all three srngie—sampie techniques under
1nvest1gat10n In a later paper; Kish and Trankel 61974) attribute
this poor performance to the probiem of u51ng the multiple correlation

coefficient with multinomial data (Krsh and Frankei, 1974:19 and 35).
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Tablé 4.4.5  Proportion of Times that 't' Ratis Falls Within Selected
Liitérvals (STR and WID Designs)

.960  *1.645

1+
[

Statistic +2.576

STR Means 0.952 0.912 0.808
WTD Means 0.696 0.600 0.560
$TR Correilation €cefficicnts 0.912 0.812 0.712
WTD Correlation Coefficients 0.876 0.812 0.732
STR Path Coefficients 0.880 0.764 0.68L
WID Puth Coefficients 0.916 0.809 0.729
STR Multiple Correlation Coefficients 0:760 0:733 0.707
WTD Muitipie Correlation Coefficients 0.880 0.787 0.747

4.5 Comparison with other Single-Sample Techniques

Ross (1976:46-50) used two other single-sample techniques to estimate
sampling erivors. For the CLS design he used a Jackknife technique. The
results are given in Table 4.5.1. These results should be treated with
caution i#s they arc derived from only one example of the CLS design:

On comparing the percent errors in deft with those found for the Woodruff
technique, the Woodruff technique appears perhaps just a little superior.
Turning to the results for the WTD design in Table 4.5.2, the results for

both techniques are so poor that comparison is not rewarding.

Table 4:.5.1 Results of Application of the Jackknife to One Example

of the CLS Design: Deft Estimates

Percént Error

Statistic Empirical Estimated of Estimator
Means 2.80 3.09 10.4
Correlation Coefficients 1.53 1.63 .5
Path Coefficients 1.47 1.53 .1
Multiple Correlation Coefficients 1.31 1.44 .9

(after ﬁoss, ié%é:d%iééj
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Table 1.5.2  Results of Application of Balanced Repoated Roplication

to an Example of the WID Design: Deft Estimates

5]
K

Percent Error

Statistic Empirical Estimated of Estimator
Means .89 4:12 42.6
Correlation Coefficients 1.85 1.66 -10.3
Path Coefficients 1.73 1.63 5.8
Multiple Correlation Coefficients 2:14 1:20 -43.9

fafter Ross; 1976:47-50)
4:6 Summéry
The Woodruff-Causey program has been found to give accurate and stable
estimates of the statistics in the SRS; SCL and CLS sample design, with
the exception of the Multiple Correlation Coefficients in the two
ctustered designs: This exception is troublesore as educational researchers
would usually not have the means of checking that the sampling errors
generdted by the program had not 'inflated' as they did in this case.

The results for the stratified designs were not S0 encouraging
although the fact that most of the estimators were quite stable leads one
to suspect that it may be possible to arrive at some bias correction factor
With further work. The poor results all occurred in cases where there was
somc support for the idea that the samples sizes may have been unreasonably
small. This raises the point that this technique is no a way of
cbmpenséting for inferior sampie dééigh. 1f énything, accurate sampling
error estimation for higher-order statistics requires lLelter samples than

those found adequate to estimate the first-order statistics.

a3
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CHAPTER 5
CONCLUSION

In this study an empirical sampling approach has been used to assess the
accuracy of an approx1mation technique for the estimation of sampiing
errors in %everul sampiing situations commonly used by educational
researohers 1hc investigation was 11m1ted to four types, of statistics
used in correlational and regression studies - the mean, correlation
Loetf1c10nt path coeff1c1ent and the multlple correlatlon coeff1c1en°.
designs; the téchniqUé provided useful estimates for all the statistics
cxcept for the multiple correlation coefficient; the problem of sampling
error ¢stimation for this statistic has been noted in previous research
(Kish and Frankel, 1974:35). The quality of the estimates declined
considerably however for the stratified designs; this leads to speculation
that the technxquc might only be reliable in cases where the minimum size
of the strata is rcasonably h]gh

fabié S'i gives some indication of the impbrtanté of fihding a
the problem of estimating sampling error. Here are displayed the prob—
abilities of an incorrect statement under a 95 per cent confidence 1nterval
which would hold if the de51gn factor were to be 1gnored: note that in
an adequate approx1matlon to the sample d051gn which was employed and hence,
that all these probabilities are not too far from 0:050: Patently, any

inferences made under these assumptions will be entirely untenable for the

SLL CLS and WTD de51gns, whilst for the SRS and STR de51gns the 51mple

randoa sample assumption has led to rather conservative confidence intervals.
The Woodruff-Causey program has been shown here to provide a signifi-

cant improvement on this performancc for cases where the effective sample

size ig not tog small: The program can glve an estimate of the sampling

error for aﬁy statistic which can be expressed as a Fortran subroutine;

the user need only supply this subroutine and, dependlng on the c1rcumstances,

a subroutine to estimate variance and a few data- manlpulatlon subroutines.

For more standard situations several less flexible but 1ess demandlng

programs (which were mentioned in Section 2.6) are now available.
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Table 5.1  Probability of Incorrect Statements When the Design Fretor

is Ignored

Probability of incorrect statement when a
two-sided 95% confidence interval is used

Correlation path_. . Multiple Correlation
Design Means Coefficients Coefficients Coefficients
shs 0.05 0.03 0.05 0.01
STR 0.03 0.04 0.04 - 0.04
SCL 0:21 0:09 0.09 0.07
CLS 0.48 0.20 0.18 0.13
W1D 0.50 0.29 0.26 0.36
Note: The first row is taken_from_Table 4:2:3 of this study; the rest

are taken from Ross (1976:39-35).

In common with these other programs usifig the Taylor's series approximation,
the Woodruff-Causey program enjoys the advantages of a relatively high
computational <peed and transpﬂrency of asqumptlons. However, it also
handsomely repays the demands it makes on the skills of the researcher w1th
the marked fléXIbllJty it dlsplnys in haﬁdljng diverse sampling situations
for estimating the sampling errors of almost any statistic imaginable and
in its adaptability to quite small computer installations.

The results have indicrted the need for further evaluation of the
technlque in situations where 1arger number of cases are involved espec1211y

for stratified and weighted sampie designs:

Atthough the results of this study are only emplrleal estimates based
on partlcular sampling schemes and for particular statistics, the pattern
of results is most p!ubduly appllcable to a wide tAange of studies undertaken
by educational researchers. Con51der1ng the broad range of p0551ble sample
Jesigns and statistical analyses which are avallable to the educational
research worker, it wbuld seem doubtful that a comprehen51ve theoretical
solution to the problem of sampling error will ever become available.
tlowever, the problen is with us now, and approx1mat10n methods such as the
Woodruft-Causey pro;iram, if used cautlously, have been shown in this study
and elsewhere, to give stable cstimates of the often large sampling errors

present in educational research data.
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APPENDIX J
NUMERICAL DIFFERENTATION .
If £ is the statictic under investigation using the Woodruff-Cuurey =-

program, then one of the important steps ix the cvaluation by numerical

AT Y Wi Meert g wtihe Stk .

methods of the partial derivatives,

(VL V5 il V) , .
37, — =1, ...r 3
1

at the expected values of the tums of the variates Vi;. TIn fact, these

e o i e T Pt 10 R 37 0k T [P a3 Sl S

expected valurs can be evaluated only by using the actual sample values
¥1» ¥a -+ ¥o. ‘The expression used to find the partial derivatives is
f 1 o= Flvy, ¥ oo Vorh oo v.) - f(v covi=h (v ‘
n bATy (11, v, vy h r) ( 10 Vs vy h T), .
for i=1; 2.. r 1) .
TEis is a straight-forvard applicz<ion of the usudl deSinition of a :
partial derivative: !
of _ lim 1 [, , i
avi = heo TR .(vl, vy . vi+h R - Vr) ;
' i
<
(2) M
. 5,
\ I
Tie only difficulty in applying the approaimatian (1) is in choosing a j
C : . : - - - - R S i B
saitable value for h. Tlis i< fourd by ccnSidering the possible errers B
involved in the approximation. T -
) It pay be shown (Henrici. 1964:235) that the eiror invelved ¥

in the approrimation is

R8T sk

RS W W BT N

- "N - I - - - - - - - - - - —
h™ froe (L) (where ' is used to derote the thedyretical first
derivative,; etc)
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significant figures used by the machine. Wheon thesc values are ased

to find the two estimates of F, a further error bounded approxinntely
.

. '

e i e

by
77 . . - - * N ’ N
f(vl, v2 . Vr) P
is also involved iqudrufE and éauséy, 1976 : 321). For a non-2cro
partial derivative, the relative error is then boundcd approxinately .
by

I B

£or ‘ x l £

L i B - (%)

Qe

65viously, as h gets smaller the first term will decrease but, since

. P is fixed, the sccond term will snercase. Thus the strategy is to

choose h as small as possible without ;

1, ]
I el

becoring to large, The program uses an iteravive procedure to find an
ﬁppfapriﬁte h actording to the steps outlined above and;, of course

Uses f; to a;préiimate £'. The only cxtra problem occurs where §!

A -~

is cither zero or very near to it: in this case the iterative i

proccdure is vezy slew with the possibility that h would need to be

where viiﬁ < E vi+ﬁ. In addition; one nust consider the rachine- :
error in the calculation of vi+h and v_-h; vhich is approximately : .
bounded by 2 vif; l P, where » = 107 and M is the rumber of ' : ;

i.A/g £ 1 2
h\ £
} : i1 ; : . i E1 3e crr Fa wams SO i
becomes rmdll. To circumvent this problem, f' is set T2 zero when h :
v ]
exceeds 600" i
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APPEXDIX K

A USER'S GUIDE TO THE WOBSRUFF-CAUSEY PROGRAM

FOR TIE CCMPUTATION OF THE SAMPLING ERROR OF
COMPLICATED ESTIMATES

Tie following uscr's guide has baen written in dn attempt to 'soften!

the rather techaicial doctmentation which dccompanied the prograz

1.
-

¢Causey, 1276). Potential users nust be warned howbver, thut Oﬂiy

thosé with moré than a beginners knowledge of Fortran should attempt

to use the program. Altﬁbugh the program demands scmeé writing of

m
o

Fovtran subroutines, the user will find that such efforts are well.
rewarded; for the program exhibits great flexibility not oaly in

the type of éamplihg prbfieﬁ it can hnn&ié; but also in the proceaufé;
it uses to solve the problem. Furthermore, in'an environment wiiere
airticilir SumApling situations were the norm, it vould ot be difficult
to set-up the program to handle such standard situations without

the niced for subroutine writing: The following is baced on the

techrical dociinéntation which accompanied the program; any errors

ace, of ccurse, the responsibility of the present author.

K1 A Norked Exannle : . ¥
- ~iJhé exazple which follows was cliosen as one that would indicate
the steps necéssary to use the Woodruff-Criisey program, and yet i
be ;iaﬁxé érough o provide dn introduction ¢o the technique: : ; 1
Codscquently issues such as weighting, the use of temporary storage
space, and the use of a user-written variance subroutine are left . I,
; v

to the formal. deseription of the program in Sections K4 and KS.
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/ ‘%. ‘ X1.1 The problem
‘ Suppose a roscarcher wishes to investigate how ambitious are

young secondary students, . 4 how this migﬁt'teiﬁte‘té‘ﬁﬁeit
ethnic origins. Some dat;.ié coii?ctcaICQﬁsiStiqg of fh? |
studeats® opinioas as to tﬁéif”iétet octﬁpﬁtisné, thé.pteséhf
occupations of their fathers, and the iﬁﬁgungé spoﬁeﬁ in the
home. The data are coded dccdrding to fabie K1.1. The scale
of occupational ptéétigé is the six:point INU scale (Broom
et dal., 1977:112). In order to make the occupational

_ prestige scale amenable to a product-moment correlation

irvestigation, the occupational categories are transformed into
an approxinately interval level scaled score as in Table Ki:.2.
table Ki:1 Format of Input Data fof 'A Worke: Example'
tarisble  Columns  Format _ __ _Comments
n 1-3 13- Identification number
raccup 4 11 Six-point scale of c:cupational
) pi‘éStigé
LXPGCC 5 I Six-point scale of occupationzl
- ) ) prestige T
- NSPRIRE 4 I:  English spoken in parental home =
1
. A languzge other than nglish
spoken in parental home = €
.7 7. missing data =2
- 54 N
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" The smplihz: scheii nsed to coueCt the dlta uas 3 sinplc

;r, _ o

"t\.._

'able K1.2  The Six-Poiat ANU Scale of Occupational Prestige

Occupational grouping = Rank . Weighted Sucial status score
brofessional . 1 . 62

\hnagerial ._ éf' - 611

Khite Collar 3 508

Skilled Manuval 4 485
Semi-skilled Minual 5 421

Unskilled Manual 6 418 -

Missing Data 7 -

An index of ambition is formed in the following wiy. If 6i and
£ are a student's scores on EXPOCC and FOCCUP respectively,

then define a measure of ambition as

3 =0y - f5 L. B

Then if e; is the sident’s score on ENSPKIME, find the product

moment correlation a:

-

T3y tiia::averaoo ot‘ t.--»-o a, .
is tho i nverage of trm ei.. NPT
'i;_?aaaa to be 56:24 and

For this data, the mesc of the ‘ai

. the correlation pqtu;qn.:{g'ﬁ.,_a—f;a};ai iﬁé- ;t ’i; 0. iéi&

"r:ndo- :mptc 'of 600 casu ‘aith rgplncenéhta so r.he 'BW B




: .
. P ' !
- €
/ o ) i S : . . .o c . R S - }
Wl . L - estimator of sampling crror can be used, that is, ’ B
- -- SR ‘ . . o
I - 2 fot the avéiiﬁé of the a.- .
i ) 3 i , '
; : e Sm e W i
. - ' : ‘ : i
L for the corrci'ation coefﬁcicnt
-
where s is the staudard dcviation of the a
within the sample.
For the data, these take thé valués 3.55527 and 0.0436021 L

respcetively, when all cases with any missing values are
déiétéa; Thus ..he correlation between lanou.xge spoken at
home and this index of ambitxon would Seem to be weak but
non-r rdom, at lcasf at a .95 per cent confidence lcvela
waever. che rescarcher is, quite unaerstanuaply, concerned
with tho use of error estimates which involve assumptions
6?'ﬁ5iiéiiii when one of the varisbles is.ciéariy not normally
! dtstx’ibuted The h'oadruff-Causey progr:m can be used to

clax xty the sitestion;

fe e e e

Ki.2 Sriving the problem

The j:wsgyan is ddpabie of solving this problem in a number of

ruperfis :j‘Iy dxff;ren: ways._ The actual nanipulations of thy .
o daca il M thr sm in cnchr poss:.bh & »r:mgenent but the B

ways in Wi v?e contin ; ii'zfomation an che data are fed

ve hp p,.e 9.*,11‘ dier,:-?'mfiédxy'. The progran will nluays

Cmled thn g = wg typcs wE Mfomation iu $The) WAY,

Lo e HRR L Be = ::t:;j.:;:i...m,'.a:ié ii_fplo, and_ e gadn
7;. ) 56

¢
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2 . The numbc: of fhnccions to bé 1nvestigated and a
- j 'formuln' in thc form of a Fortran segnent fof each. o
3 The ﬁﬁnbcx of iaridtbi lnvblvcd in ohc invcstigntlon,'
an indlcator of which variatés are relevant to which
function, and the actual data on which the investigation
is to be npade.
4 Auxilizry informstion such as extra output, tempora-
storape, 2.c.
One particular way of solving the problea is descrit-—? =
A solution starts with the 'Problem Card’.
The program interprets the information contained cn that card
‘in the following way. ' | '
1 A value of 1 in colums 1 to 4. "
This means there is only one stratum to consider.
2 A value of 2 in columns 5 to 8:
#1 © ' This means there are two functions whose sampling
_;__* . L S k .
3 . - errors are under consideration:
' . ‘ . .
if‘ ' 3 A value of $ in colums 9 to 12;
iA o " This means thcro are five vnriates involved 1n the. » .E o
AT problems s T Ei N
}ta - _f“ S & l value—of l in colu:n 13. ,'7-‘f :-n;ju:;;.j'? o -;,fiiilﬁ;;-ﬁj_i L

e
A
S

-
e
S
i

Ra ¥
L
KHR
s
=

Thls neans that the progrnm nust look to subroucln,ﬁ»f - E
_VLSTRAT fbr stratuu infornation. S n - . .
oy . . 'Li_l value of l ln column 1§ o m'; -y
. ;_3 : ) - .
o
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6 A value of 1 in column 20.

LY by i
‘_" '.{;&".:‘;.,“‘*'. !

4

o

This means that certain information concerning cach
. derivative is to be printed out: -
7 A valuc.of 1 in columm 35.
This means that not zll the variates are involved in
all che functions.
One important point must be rade, the Fortran function F
must calculite the functlions under investigation using not
the individual values of the varicklcs, but the sums over the
entire population of each of the variztes. The distinction
'is important, the varisbles aré the measures which are under
ins  gation whilst the variates are the variables plus
certudin transformation of the variablas which will be nceded
in the calculation of the fuﬂciiﬁn; Thus, in this case the

variables are as given In Table K1:1, but the varitwtes, which

RSP

are the values to be rcad into the program, are quiie different.

%

ey

In order to calculate the two functicns, the following five

sums arc needed:

5

R

.. -—_ 2 < o "ﬂ,;,
BT B E:ni. 2531. E:?i?i

PN

iy
4

Hence; for cach case the input data must be

itk

»
v

, > oL

KA SI I

.

22
Cyr C4» 33> 340 3,0

In genéral there will be mors variatcs than variables, Tho
composition of this list of variutes is not unique. For :

instance; in this case it would have been iﬁiii ﬁ6skiblé_tq‘\

write a Fortran function which calculated the acan and

corrclation cocfficicnt in terms of the folio&ihﬁ set of
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A viriates:
2 o2
. ©, 0., £.; a7, a.c:
i Sy 95 fie 35 M0
.

o

ST 2 06T g g e

Having deseribed how the daza is to be treated on this
problam card, the user must then write several Fortran

segments;  always a Main Program and a funetion; F, and; if

the user has so indicated on the I'ril.les Card, any others

which are nucessary.

The Main Program:  Tius is used to star: the prdgram

€ ]
Vi, 7) ) Recarig szace for ctrer
W oBCiS f coriitines (See 23.2.1)
[ 1{a03,5)
& . C"--- -1:.- for =inFgl
b3 armom ilzek fer LSTRAT
E ) o "3:9
~; I=t
b LeiTSis, 2y, :
= 2 FCRUHATL " SRITLE UmRieni™ 7 KT Exmiiile )
z b0 55 K=1,699
gj _ o REABIS 1) (IXUT15,14%1,3)
i3 'O FGRRATIL,IE :
% IF4IXE1). 2677 €3 T0 50 cstetton of
g IFUiXi2).2a.71 GO 79 50
S ITCIXi3Eas77) S0 70 33
be 2% Js1,2
iritzidica:n XI(J)HSQ?
lfllle)-LG--,. IA(J) bll ta.#-ﬂ ‘iCﬂ .)[ v‘fiauln’
TE(IXEIISE03) IXiDIZSeB Filu? 220 LI7SCE to rake
IFCIALS).E6.4) 1aidi=435 tret interval lovel
Ifixtareacn) iXtiizs1
TFLIRiJI. 20,88 iXxiJgiadts

20 C0uTienE. . ‘
Gill,i137Leavilatsiy - - -t
UI(L,.)IUHI ll»n(;,l’ l:c'rka';i:r.r'c!rt!j-e,y?'i:!ts:
yn(x.,) FLOATIIZI2) -FLAATLIX (1)) tray are stsred in
(,90=L103,30eU10T,3) S
s:tx.,)eda(z 1.‘uu(;,a)

R3ELsl eee_Yer2ing trichk of nurbet

_ l‘l*’ 269 1, et
o tonaE of caces nct caleten
_ WklT€ig,80) #5EL ] .
60 FORAATC’ K3EL i5 7,13; S o
CaLi FREFaRia, 3521, ./.b ISl ’ Cees ManTeeateal tar X
SIGe -

Figure K1.1 Prozraa DINKY
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blocks for latér subroutines, to carry out any calculations
which néed be performed only once, and to call the first of

the supplied subroutines; PREPAR,

Note that data cases with missing values are eliminated
entir:'y from the calculations. This is necessary as at a
later stage a linear combination of the variates is to be
calcclated for each case (the result of this operation is

called a ‘U-statistic').

Subroutineé WINPUT. This w35 requested by the fifth entry
oni the Problem Card. Its functioh is to supply the five
variites, one case at a time, o6 PREPAR. In this example
the variates hive been placed ini the Cemmon block COMMY by
the Main Program, so all tuat this subroutine need do is _;
tsansfer the cases in the correct order back to the calling

suiroutine through the araumsnt W.

SUBRGUTINE VINFUT(U,i)
DIAZASION U1tod0;5},dl)
CONMGHTCOHN/GT, 13
K303+
80 16 Ja1;5

o Uia=Riies, d

19 COuTINGE
SETURM
Tild

Figure K1.2 Subrsutive WINPUT :

Subroiitine NSTRAT. This was reniiested by the fourth entry

or. the Preblem Card. Its fuiction is to supply four pieces
5€ infarmation fur sach stvat.s to the ciiiiﬁg subroutine.
The informaticn nceded is N, tlie nusber of cases in the
ftratua, '?ﬁ', the snmpiing ?raction, 5Nf', the total number
60
Q (;(J
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‘of cases (which should be se: to zerc if FR is supplied) and | B
a quastity named 1V which tells the program how to esiimaté_iil‘
the variance: In this case,‘tﬁevé is only oﬁe'straium, the
number of cases has been placed in Common block COMMA by the
main prog.-an, the snmpiing friction is 0.0 sincé we have .
P sampling with replacement, and the value of 1V is 0 which
E' indicztes that =h¢ program is to use its default sSimple random
= sampling variance formula:
+ -

PR

SUBRGUTINE K3TRAT(1,id,FR,ET,IN
COAKON, COnrN/13EL

H=iiScl

FR<0:0"

NT=0

=0

RETUFH

EwD

Figure K1.3  Subroutine N!\iRAT

(0 Lol W DR e €0, ohe f

LACTIN®Y 4

The Function F. This must always be supplied by the user.
1tS purposé is to calculate the functions under investigation

supplied by a Cormon block called COMMF which is defined within
subroutine GENVAR. This fuiction is to be calculated uSinE )

doublc precision wherever pbs.‘;ibié.

61
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YOUBLE PRECISION FURCTIGR FI7,HF,3,H5,i3,R,i#k) “
DIUBLE FRECISION T(RT),S(N5,#5),Ri4R) ‘
BOLY_E PRECISIGH FUNI2),V{2)
CUiHAOR/LOnAY /L
COHOH/ CONRI7H
FURUIISTUSH/SFLORTND
IF(L.E0 1) 6O TO 99 S
VLT LSATIANOTIZ)-TL 0T (1)
$2YsBFLOATIR I TLAN-Ti3) 4Ti3) ) o
FUREDZ LT LORT R4 T (T~ T O e T i3I/ L3R TIVE I w0121}
99 F=EUSLL)
RETHAN

civb

Figure Ki.4  Ths Function 'E'

The Svhroucine NSUBFV. This sukrouiing is rcquested by the

l1zst entry on the Problen Card, Its purpdse is to inform

the érogrém of which variates are involved in the calenlation

of each function. In this case, Function 1, the mean,

tnvolves aiily variate 3, whérsss function 2, the zorreclation
coefficient invslves all of thz variates. The subroutine

has three argucents; the first is the nuaber of the funciton, L,

the second is the nicber of the variate, J, and the third

is a value to bc supplicd, which équals two if the variate J

15 involved in the calculation of the function L, and equals

one if it s rot involved. ' _ CL
SUBRGUTIIVE WSUBFVIL,d,170) o ' :
3;93177” o .
IFUIL.E3.2) Irve2
IFtJ.83.3) irve2

" Figure K1.5  Subroutine NSUCFV N L T N £
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‘The Dumav Subroutines; Although they are not invotived in

this cxampie, the Fortran compiler at many 1nstallations will
require the following two dummy subrout’ines.

SUBROUTLNE VARNCE (T,%,T,5,N,F,R,Q,INV)

RETURN

END .

SUBROUTINE HSUBMV (I,J. ..v)

RETUIN

END
The first would be needed if the user wished to supply a
different variance formula from the simpie random sampling
formula (viich is a defauit). The second perforns a

similar function for strata as MSUBFV performs for variates.

The Supplied Subroutincs. The ‘progran' as sups icd consists

of the three subioutines PQEPAR CENVAR, and SWITCH. These

necd not be iltered:

The printed output from this example

is ngen in Figure X1.6.

LE VARTARCE 70R binici ExaiieLE
524 _
{310 EuuTS nEE 263B 7 7
DERIVATIVES FOA FJhCTIQE R
303 G UTUI4G7E-02  6.337100533-03
D FURCTING 1 9:53237550E+02
SERIVATIVES 7R ruRe N
i3 -%.e757 54
2 03 $.i3ce 03
305 -0.Tier £3
303 0.i229 +09
S 3 0.7s%3 33
FuiicTiON 2 =4 ISSSIS3IEN00  §1F7372i0E-02 6. 42:3 JONE-0T 0.375743342000

Figure K1.6  The uutnut from Exasnle DINKY
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. ngen by the uSUal fcrnula was as ééurﬁ as one could

Tk 1 Non-Serae!f*edgease

The 'DILENSION LIMITS' are the rcquired minimum dimcnslon _

sizes needed tor thc arrays A. N and D respectivcly, of the

Main Program The dcrivative infbrnation for each functxon

denvaéive; and the final increment.

This information given for each function is

4 .

the «uzber of the function

B

-

2 the estimated value of the funetion

3  the estiiated variance of the function
3 the estimated Stsudard deviation of the function
S the coefficicat of v5iih£i6ﬂ (i.e. £4) Qivided by (2)}

The results indxcafe that tke sfandard error fbr tbe nean

R - IR

N
v,

ever expéé: but then its acCuraéy was rot in question. ﬁar

4

the coxy Iatian coe‘ftéiént héﬂéve 2, the progran has reVEnled

z 3 S per cent inaccuracy tn the estimate éf erfcr givén

. _..- . JEEE

be the usuxl formula. It is 1qstructivc nore ver thit thxs

the Situatien :

L. ./“ Nt s
LE RECR I




way in a function F of all V variate totuls. The goal is to
estin~ate Var (F).

Supposc a sample is now drawn from the population and in that
sample iij is the value of variate i for case j. If, furthermore,

ﬁi is the probability irior to inclusion) of j in the sample,

let
. |
ih P.
and then
Yi =,§i Nij' e
J=1

when n is the total number of cases in the sample,
is an esiimator of Yi; the population sum.

This allows cne to estinmate

s F(Y

m

o Yp oo ij with

T

= F(¥, 5, ... ).

The first-order Taylor Expansion of F about F is then

v
F, = F + E D (Y; - Y)

.i=1

where i’ii is the derivative

’ aF e , .
3?1 ovaluatel at (YA Viee Yv) 7 .
Var (#) is approximated by Var (E) which is then approximaiéd
by Var (F,). '
65
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‘The variance of F given by

Vat(z DY, ) = Var(E T W,

- . i=} i=} J=1

Z - i=1
Where U walJ = —r————

These U 's are called 'U-statisties';

The variance of this total is found in the same way as one
would find the variance of each ¥; considering the original

-s’inipiiﬁg' s'cﬁemé. Where the sampling scheme was sirple randonm

sampiing’ the nppropriate variancé estimator is

X . Z .- u) | .
Varcz: U,) » —— *’*"**‘“f' - . $:~;;'

n-1

where f£ is the sampling fraction

and U is the mean ‘U-statistict.

This forpula may be choscn as » default in the program.  ~ . -

The calculations may be performed using the weighted W's or

the unweighted X's.

Sn s m v e et e st fma bt av——ae s | et e it o il st ki a0 e b s o
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K2.2 Independent Strata

If ¢he sampling within each stratum is indepéndént of the
rest; the above process may be repeated within each stratm.
Let H be the number of strata. Use the subscript ‘h' to

. denote that a certain variate or statistic pertains only to
stratua 'h'; and the above formulac wiy bé rewritten to
describe the application of the process to a stratified
situation: The variance estimation formila for'Sinle

randon sampling within ecach stiatum bSecomes

) 1 -£) qu,h - &,
\'ar(zﬂj;ﬁ) B ——— (n D ”-

i=1

K3  Formal Description of the Use of the Progranm ‘

The required inputs to the progrim 2re of three types: first a
Problem eé;a--iéiis the projran the type of problem under
consideration and the way in which it is to be handled; second,
a main program and a series of subrsutines must be included with
the source deck; third, the data must be provided in the various

ways specified in the Problcm Card.

K3.1 The Problews Card e ';_'*:-%é“

The information cohcgrﬁing the type of pioblem to be
investigated and the way that the user wishes it to be ﬁ:ﬁdied
is snupplied to the program in terms of numbers punched on the
Probiem Card. This card should be left hlank unless aiﬁéiiiéfj
indicated. There are scventcen such numbers and the user Gii;'

be roferred to the information ihmédxatcly below by refercnce

to the names 'PCl', °'PC2*' ... 'PC17' which indicate their

67
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sequence on the Problem Card.

TN TOrS T W - v v AR 2 Ot e - B i -

X3.1.1 A_Column-by-Column Commentary.

PC3

Comments: This indicates the number; H, of independent

Title: Nunbcr of functic-s Columns: 5-8 Format: 14

Coawments:

strata. [f there arc ro strata, then H = 1.

This indicates the number; G, of functions

Title: Number of varzater Coiumns: 9-12 Format: 4

Comments:

This indicates the nowber; V, of variz%ecs
which -re input as data to calculate the

value of the functions under comsideration.
Note that tl.e number of variates will genérally
be grecater than the number of ‘variables’

involved in the functions under consideration.

Title: Input Mode for Stratum Descriptors

Column: 13 Format: It

Comments:

For éi&ﬂ stratum; the user must supply four
quantities, This eitry £-115 the program
where to lock for them.

1f they are to be read from cards, place a '0°
in this colum;

1f they are to be read from an unformatted
binary file, place a ‘1’ in this coluon.

1f they are to be provided from a user-

written external subroutine NSTRAT, place a

'2* in this colusn. -

Betails of the inputs to be provided by each |
of these modes are contained in Section Ei;i;i.i.
The Sératuﬁ DéScript- ‘ V

68
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PCS  Titlo: - Stratum Descriptors Input F

Columns:

i

Comments: °

PC6  Title: Input Mode for Variate Values .

Columns: 16 Format: Il i -. . .

Conrments:

PC7  Titls: Variate Values Input FLle or Nunbcr

Eards Coluans: 17-18 Fon:at. 1z

lJ—Z: Formnt 12
if tlo value of PCd is 515 then the 6531'
must here indicate the interm:.l mit nunber of
the unformatted file on which :csides the e
Stratun Descriptor inforratioi..

1% the value of PC4 is not *1' then these
columns are to be 1+ft blank.

Of course tlu ii;éi nust ensure that this
iriteii;al unit number is not used in any other

part of the program.

For each sample unit in each stratum the user
mist ‘provide the V variable values. This
column tells the program where to fiad them.
1f they are to read fro- ai‘d's. bibt,o 1'0'
in t'%s coluan. L T

1f thcy are to Se read ftOI an unfc.—matcec.

Variate Vilues.

.,.‘.,

oi’ Format.-




.)43.

‘3
B

LR

e

i

‘o1
2

fﬂgu

2

MRy

e

»

;f;%

PCY

W
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Comments:

1f tar value of PC6 iz '0' ther the user

" must here indizate the numbor of cards needed

to givo the forma: of the card or cards

from which the V valucs are to be read for each
sample unit in each stratum; '

If the value of PC6 is '1' then the user must
here indicate the internal anit number of the
unfornatzed binary file on which resides the
Variate Values information.

1f the value o° PC6 is not 10" or '1' then these
Of course the user must ansure.that this
internal unit number is not used in any other

part of the prozram:

Title: U-Statistics Columns: 19 Format: Il

Comments:

If the user desires a printout of the U-statistics

~ for each case; a 1' is placed in this column. .

Note that these are printed in the format
10(1X, E11.6)

Thus the output file or printer must b

copable of receiving lines of 120 charsckory.

If the U-statistics are not needed. lcave this

colurm blank,

Title: Derivatives Colusns: 20 Format: Il

Corments:

If the usor desires inforsation concerning tke
derivities of each function with respect to
the appropriate variites, a *1' is placed ia .

this coli.n. The information consists of:

_i tﬁé huﬂﬁéf o? the VAaTIiate invoived in thé

' diff%reﬁtiation:
70
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2 the number of iterations involved ln the
~n¢mericnl procedurc (** denotes the - .
naximun of 8); ‘

3 the value of the derivative;

4 the £inal incroment used in the mumerical
procedure.

This information is provided in 45 characters -

across ecach line; | _

If this infornation is not nceded, leave this

column blank,

PCIO , PCi1, P712, PC13, PCl4

Collective Title: Tenmporar) Storage é&iﬁiﬁii 21-33
Comnents: These columns may be left blak iiiiéis the
anount of space necded fo; storage of
11vcnsioncd arrays, which xs.uzscusJed in
particular machine Eéihézusea;' 1£ this is the
case, COﬁSuit Section X4,
PCIS Title: lrrelevant Strata Column: 34 Format: I1
. Cozmerits: If aii variates are defined for all straca,
lecve this column blank. l
If for some strata, certain variates are not
defined, piace & '1" In this column. The
user must then provide & user-written cxternal
imiciian iééijéﬁi.? aiii'ch mfoms ‘:ha program of
: This is descrxbed in Sectlon K3. 2 3 _ _
Note that an altcrnatlve stratoxy is to supply
a valuo of zero for the. variate in the relevant

strata.- This will result 1u 2 loss of efficlcncy

-~ 7N
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and may aiso lead to execution ervors.

PCi6 Titla: ‘Irrelevant Variates Coiurns: 35 Format: i1

Comments: 1If, apart from the cbﬁSidEratiﬁﬁs'BE Irrelevant

Strata (PC1S), all funcrfons are defined
using stratum totals of &ii of the variates,
leave this column blank.

If all functions are defired using population
totals of all of the vnriates, place a '2°*

in this colomha. ' -

geet e i b 4. e

If soze variatos are not involved in the
calculation of sore furctions, regaruless of

whether stratum totals or population totals -
are used, place a '1' in this column.

The user must then provide a user-written
external subroutine NSUBFV which informs

the program of the appropriate action to be
taken with respect to cach pair of stratum and
variate: This is described in Section K3.2.4: T
_Notc that ar alternative strategy of allowing
the program to E;iéﬁinié derivatives of
irrelevant variates will resulf in a loss of
cfficioncy and may also' lead t6 execution
errors. ' e

Tho user must be careful at this point to

ensure : e

1. that population sums or stratum Sumc aic . .- .
. used in the function F (see Section K3.2:2)
to correspend with what the user has

indicated here, L

72
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- - .2 that the conditions indicated here do not

conflict with those indicated in subroutine

Y . 40 e o oo e S
3 « A
.. .. .

NSUBHV (see Scction K3.2:6)-

PCl7 T’ ‘le: Preliminary Run Columns: 3¢ Format: Il

- aerem srieemeie

Comments: Lf the user wishes to obtain lower bounds for
the dinensioned arrays discussed in Seetion
K3.2.1 withous =ning the entire progran,
place a 'i' in this crlum;
This step will often not ve necessary as all

that is uceded is to cxceed these l.imits and
still rewain within the available stnrrge

space.

K3.1.2 The Stratum Descriptsrs. For each stratum the

folloiihg information must '-* orovided
1  The stratum sample siz:, N, in integer format.
format. This is the ratio of stratum sample size to
. total stratum size,
value is used only to cospute the sampling fraction. If
NT is set to zero, then FR will be used as the sampling
fraction. . - o , :
i;- A value, IV, which inforas the program of the mode of |

variance computation te be employed:

1€ varlance computation is to be done;, for the strutum.
under ‘considération, using the intomal sipple random
sampling variance formala applied to eztemally veigitea
data, then set 1% oqual to O,

73

¢}
b

ERIC

Aruitoxt provided by Eic:



RENDACR e ol L A e mediad Uaia e o e Y o B L
- . . . - . P -
i - =

If the same procedure is to be follewed; but the daca
are to be intemally-weighted, then set IV is cqual to 1.
If the variance computation is tc be done, for the Stratua

under consideration; using a user-written.external

subroutine VARNCE applied to cxéernciiy—weighted data,

then set 1V is cqual to 2:

If the samc procedure is to be followed,; but the data are

to be in:emally-weighted, then sct IV is eqbai.to 3.
Where no strata are invbi?ed, that is; where only population
values are under COhsideratibﬁ, this information ;s to oe

provided as thcugh for stratum one.

Note that if IV indicates infermal-weigiting, all calculations
will be in torms of variate vaiues divided by the probability of
selection witkhin the relaw~t stratum; If IV indicates
oxternal-veighting the urer may pre-weight all data before they
are input into the “rogrem, of; if using an external subroutine
VARNCE, the user may input unweighted data, and make
appropriate adjustments within the function and variance

subroutines.

The progran finds this information in the way indicated by

the value of PC4: If PC 4 equals :ern, the information is to

be rcad from cards. The firse car? wust give, in columns 1
stratum, providing for each of the H strata the four quantities.
The redatning H cards csntalning this information then follow.
If PCs eﬁuais 1 the four qﬁani{Eie;rpfo to Be're;a (in H 7
groups of four) from the unformiattcd Biﬁﬁrj file iiiﬁ internal
wil. nrembes Indicated by‘?ég; If Péi equais-i the four quaﬁiiiiéé

-

~ 74
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in Secticn K3 2.4

;

K3.1.3 The Variate Values. For each case in each stratum the‘."ﬂt

user must provide the V variate values. These must be in, the
order of their rclevant scrata and exactly the number of cases
as indicatéd by N must be present For each stratum. Furthermore
the user should énsure that the vaiues are weighted or
unweighted according to the specified vaive of 1v. (Sce

previous section for a definition of ¥ and Iv):

If PC6 equals zero the user must provide a number of cards,
spacified by PC/ (maximum : 2) containing the format S
infornation concerning the cards from which the V values are

te be read for each case in each stratum. The remaining cards’

containing all this information, thea follow.

If PCo équais one, each set of V is to bé read from an unfbfmatted._

Biﬁéry file with infcrhai Unit nurﬁer iﬁditatéd by PC7.. 1f

WINPUT which is described in Section 3.2.5,

K3.1.4 Computational Efficiency. The program bay be

instructad :o disrcgard the tnput of data for certain strath .

for certain variates (see PCIS and Section K3.2:6); it may. be u: 2

instructéd to use only populntion suns, or to disrcgard ceitatnr'ﬁt

variates in the computatlon of ccrtain functions (sec ?Cis nnd
Section KS.-.?). On some systcms these steps uill be nercssary,
but on all systems Lhey u!ll cnhance effigicncy. :fF-i K
AS a geherai rule computation will alvays be faster when ..
population suzs only are used; but alse the w:iting of the
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function subroutine will be easier and the numerical

b o
computstion of derivatives will be mors accurate; Thus,

wherever possible, population sums shouid be used.

It was noted in thé ‘Worked Exnuple® that dilferoit sets
of variates miay be uscd to calculate the s2ue wa~iion. Where
this is the cate of the smuiiest sot of variates will give the

fastest solutions.

K3.2 The Main Program and the Subroutine -

Tﬁ§ nser must.always supply a Rain pfégré; and a double-
other subroutines will be necessary depending on the options
spetified on the Program Card. On some instillations it will
be necessary o provide dummy versions of thesé subfoutines
cven it they arc never czlled. The part of the p}bgrah which
ha: “een :upplied consists cf thieé subroutines - PREPAR,
GE::R, and SWITCH - whi-n must alwavs be included in the
scurce deck and which are referred to coilcctivély‘és the

‘core subroutines?,

K3.2.1 The Main Prograa. The cain progran performs five

functions,

1 It begins the operation of the program: On some iystems |
this is achieved by making the first lins a *PROGRAM' line;
on others the system dctects that it is a main program

.. simply by the abscnce of a SUBROUTINE or FUNCTION staiement
at the beginn ng: o | o,
2 It veserves sufficicnt spaco for the dimensioned arrays

© which ate to be ussd by all the subscquent subroutincs.
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The amount 2f space nceded by tie ccrc subroutines is
indicated bclow. If the space needed by these subroutines
is not provided for in the main program; execution will
termirate and one of the core subroutines wil' print out
the nccessary dimension limits: If aany of the user-

It can, beyond what is zalled for in the Proilem Card,
provids in advance data for any of the user-written
sobroutines: These could be rcad into iﬁié%i&ékihi
COMMON atreas not named CCMMF or PREPGN for use at any
subsequent stage.

It can be used to ‘open’ ~nd ‘close' files: rewind

[2]

tapes, etc.

P

it caiis tﬁc first core suEroutine ﬁﬁEPAh«

The form of the main program is:

DIMENSION A(a) ;N(n)

DOUBLE PRECISION D(d) - i
o Y.

W LL PREPAR (A,a,N,n,D,d)

STOP
END

As previousiy noted, a first 'FROGRAM' line may be nccessary

on some systems: 'A' is a rcal array, 'N' is un integer array,

and ‘D' {3 a double precision array; they are of dimension

77
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. Thes. bounns need only be axﬂee ed lf the user'ﬁas urlttrn

: subroutines which wlll use more dincnsion»d array ;pace. f:;f'?'i';

i; f, ;ﬁé a

nun@ricnl

run with Pc17 3 l (fbr this prctiiinary run the} mny ail.bc set -

equal to, say, 100) Altern;tively, low- - JOUﬂdS nay be

calculated by hand as follows: . '

" If sio temporary storage is cailed for (that is; all of

PC10, PC11, PC12, PC13, PCi4 arc zero or blank)’

and if L

H = number of strata

¥ = number of variétés

R = .otax number of $§ﬁp

X . number ¢4 sample cases 1n the lovgest stratun “H.:
then )
BEVR+K+H+ v
neMev

dx VH + 23 i'f'_ .

1f population sums are used or 1° th: optionnl prlntouts are ) Sl

LR YRR .,

not called fbr, or if tenpory storage on lntefnnl Unlt i

Ny F1sh

Exact bounds 'n thase c=s may bc f-

xs J?'Th~ Frobleu oE !nsuificlent S'orage
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The form of the function F is:

DOUBLE PRECISICN FUNCTICN F (T,NT,S,MS, NS R,NR)
' DOUBLE PRECISION T(NT),S(MS, \S) R(VR)
COMMON/ CO\'\IF/ L

RE {URN
END

The arrays T, S and the common block CCMMF should not be

altered in a problem needing no ¢ nporary storage. If temporary

storage 1S used consult Section XKé: The common block contains’
L which is the r.uder of the function to be éééiﬁated. The
function is to be defined in terms of population sums which are
supplied in array T, or stratus sums which are supplied in.
srtay S, whichever ii w corriate. Note that T is of
dimension V and § - 24 :imension (d,V) that is, elgmen:.
S{I,J) will be the strati: sum for stratum I and variate J.
Two possible pitfills should be noted. Fivat, if PCIS = 1,
tken for some pairs the stratum sum S{I,J) does not exzst‘
if it appcars in function F; its value must be set to zero.

FUNCTION F must use stratum sums; population sums; or neither,

according té what is called for by PC16 and SUBROUTINE NSUBFV. .

N : R -

K3:2:3 The Suboutine VARNCE. The user need supply this

subroutine only if; for some strat; iﬁé internally-provided
sxnple Landen samp!ing fornula is nbt approprtate. The -

sub"outtne is called for each stratum 1n order to provide thc '

- - .

variznce of the U-statis:ics..




ERIC

Aruitoxt provided by Eic:

The form of the subroutine YARNCE

SUBRCUTINE VARNCE (T,M,I,K,FR,Q,INV)

DIMENSION T/a)

RETURN

END
The array T ccnsists of the U-statistics for che particulat
stratun under consideration. If the ussr incicated that the

3
input data were unweighted, (see Section K3.1 K3 the U-statistic

5

will now be weighted. The othe: variables aves
M: tﬁé dimension of array T
: the stratus unner consideration
N : the sirﬁtjﬂ size
FR : the stratum samnling fracticn

INV : an 1nternai unit r.mber needed only i

_temporary storage is used.

The variance contribution for each stratum is evaluated in

terms of the U-statistius and placed in vafiable Q.

If tﬂuporary storage has becn called fot in the Problen Card.

consult Sectxon K4; o g _.'A ;‘_;]: uﬂf";' 2

only if °C3 equals . The subroutxne must 'upply the fbur

quantitics V FR, NT and IV for each stratun (soo Section _"

xsxz). .
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The form of the subroutine NSTRAT is

SUBROUTINE NSTRAT (I,N,FR,NT,IV)

RE* URN
END

The variable I holds the number of the stratum for which the
four quantities are needed. ‘we way of achieving thie would
be to read in or calculate the M sets of four quantities in

the main program and transfer them %o NSTRAT in a common block.

K3.2.5 Subroutine WINPUT. The user nced supply this

subroutine only ° s 2, The subroutine must supply, in

turn; a set of T each case in ~sch stratum (seé
Sectior K3.1.3).
The form of the subroutine WINPUT is;

SUBROUTINE WINPUT (W,M)

DIMENSION W(M)

A ) .

RETIIRN
END

The dimension of artayﬁw, -f no :empoiary storage is called for,

wiil be V; the mmber of variztes. If tenporary storage is
called for, zee ;ec:iéﬁ K4. One way of arranging this subroutine
would be * ; zead in the variate values in the main program,
transfea ‘thea to NINPUT in a comeon block, and read £rom this
common block znto.arriy W iho ipproprin;e variato values of

each case.

81
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C.& €xlrd iniégér variaﬁié, say ﬁ, included in the common
9.'.% could be used to keep track.of which was the
épptopriate case simpiy by incrementing k By one eacﬁ time
WINFUT is called.

e
£

K3.2.6 Subroutinc NSUBHV. The user need supply this

subroutine only if PC15 equals one. The subroutine must
indicate to the calling subroutine; for -:ach pair of stratum I

and variate J, whether variate J is defned in stratum I.
The form of subroutine ASUBHV is:

SUBROUTINE NSUBHV (1,J,1HV)

RETURN

END
The subroutine :arries out its purpose by returning for
aach pair of stratum 1 and variate J the value IHV = 1 if
variate J does ot appear for stratum I and {HV = 0 otherwise.
Note that for any pair for which IHV = 1, dummy variatss wnust -
still be supplied for cach of the cases in stratum I.
The data supplied in this subroutiné *liculd not be found by
reading in fresh input from unit 5. One way of implementing
the subroutine would bé to reud in the rélevait data im the

main program and transfer it to NSUBHV througﬁ a common block

K3.2.7 Subroutine NSUBIV. The iser need supply this

subroutine only if PC16 cquals J. The subroutine must
indicate to the calling subroutine, for each pair of variare
J and function L, whether;

. 82
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L] the stratum swa of variate J is involved in the
computation of function L;. L P
2 the variate J is not involved-it all in the computation l
of function L; . Ty
) 7 o - 7 - SRR
3 the population sum of variate J is involved in the
conpuiaiién of function L: )
The form of the Subroutine NSUBFV is
SUBROUTINE NSUBEV (L,J,IFV)
RETURN
END
The value of 1FV is ¢o be cet to
(a) iero if case (1} above holds
(b) ons if case (2) above holds
(¥Y two if case (3) above holds: o - #
. L e

The values o€ 1AV should not be Aetermined by reading-in frééh‘.
input from internal unit 5. one\‘s;sy of implerenting this
subroutine would be to rcad the requircd values of IHV into :';::=§5
the main program and transfer them to NSUBFV in'p.cbmﬁéh'
block. L e

K3.3 The Datz IR
As indicated in the provious é:é_iiéti§n§; ihere are v;rioﬁs _
typcs of data ta be conzunicated to the itbﬁiiiiaﬁé'tﬁétd;aéé ff;*"
sevaral options aboue how each is communicaisds ?her§5;§o £iv&"J

types of dat: input:

a3 . N
-
P
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1 The contiol and defini” i~ irformatior contained on the

" .

Problem Card.

2 iﬁ? information describing each stratum.

3 The variate values. :
Inforration concerning irrelevant strata and
descriptors:

5 Sundry constants, wcights, ctc. that might be nccded.

The information on the P{obibm Cird is aisays cxpected in

card forn (or equivalently, on unit five) . The stratus
information may also be provided in card form, in which case
it must be preceded by a forma: card, or on an unformatted
binary file, or throtigh a subroutine NSTRAT which may itself
réaé cards or COuid aitérnﬁti@eiy rcad the information from a
unit other than five (see PCd). The variate values may "o
read in using the siame options as those for the stratum
descriptors (see PC6). Information cencerning irrelevant strata
anid viriites is 7ot Lo be read in from cards by subroutines
NSUBFV anid NSUBMV. This information may *e rcad in from cards
by the main progran and transferred to the subroutines by
comson blocks, or it cauld be rcad from a untt other than five.
Sundey weights, constants, ctc. would be best read in from

cards by the main program and then transferrcd to the relcvant

subroutines by Lommon blocks, although it would be possible to
read than from units other than five: I1f the user does .
© deckde to use auxiliary units care must he tak:n not to use
any units necded for teaporary storags (see KE10 e °Cli)

and: to rewind them where relevant.
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for in the followify order:

K3.4

Then

Any data called for by the main program (see’above)
The broﬁiem Card (see ki.i)

If PCY4 = 0, a card giving the format for the following
stratum descriptors.

1f PC4 = 0, or if NSTRAT reads cards, H cards supplying

-the stratum descriptors.

1f PC6 + O, one or teo cards (whichever is i "icated by

PC7) giving the format for the following variate values.
If PC6 = 0, or if WINPUT reads cards, the user must here
supply the cards which give the V variate values. There
will be one or two cards per case (as indicated by PC7)

and the cases are to be in order vy strata.

Printed Ovtput

_In order, the printed cutput is:

The. required r.inizmum dimensions for arrays A, N and D

of the nain program; based on the eitries of the Program
Card and the stratum descriptors (sce K3.2.1). If PC17 = 1,
the program stops after printing this information,

for cach function:

L€ PO = 1, a line glving inforration for each computed
derivative. These are grouped by stratum if stratus

sums are being considered; if both stritum and

population suas are being considered, the results for

popuiation are given for stratum one. The printcd

8s
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infornation on each line is

(a)

(b

(c)
(d)

the number of the variate involved in the differentiation
the nusber of iteraticns invelved in the numerical
procedure (** denotes the maxigum of ﬁ)

the value of the derivative

*he final incrcment used in the numerical procedure.

If a sur fur differentiation is less than 10 0 in absolute value,

the dec:

ihe i:i'xm é(i lihé.

unction and stratum. These are printed in E11.6 format,

30 to a line.

(a)
)

(<)

(@

(e)

4 The resuits, consisting of:

3 I£PC8 = 1, the 'U-statistics' are printed, grouped by

thé number of the function

ths estimated value of the function

the cstimated variance of the estimator of the
Function

the estimated standard deviation (i.e. the square
root of (c)) -

the cocfficient of variation ti.e. the ;:s&aa&é
deviation divi¢ 4 by the estiﬁated value of the

fun-<tion,

I
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K4 Thc Problem of Insufficicnt Stcrage Space

In certuii circamstances the amount of storage svace indicated in
Section K3:2 will be larger thon that available on particalar systems,
To cope with this a scries of internal units may be used to reduce
the neec! far iwrge dimensioned arraye. Ignoring possible extra

dcl by the user-written subroutines, rhe upper bounds to

BN

~ce

<

o..La storage space arc:

1 floating-point A< VR +K +H+av

2 integer ng2H+v

3 doubie precision d & YH ¢ 2V (i:e. 2d wor&sj
where

= number of strata
= toval number of sample caces for all strata

H
V » ncmber of variutes
.
K

> nurber of sample cases in the iargest stratam.

Tiese upper bounds may be much highcr tiian those atthaiiy needed

iﬂ any pﬂrticuiar Sithatioh. The L Cr nay make a nreiiminary run

(sct PCL7 to 1), in winich case the pisgrum will calcilate thie
épy;opriatc upper bounds and then stop. If these upper boinds are
within the available . = - Lete, the user should skip the renaiader

Oé this section

«« the calcuiaied upper bounds are too hizh, the user may try

each of the following strategies in tumn.,

K4.1 Stratcey One = Discird Variite Valiies

Cénerally the most troublcsome storags problem is represented
by the term 'VR' in the floating-point storage space. This
15 reduccd to 1 if the user sets PClO to 1 (format £1) and

p:cvides for a temporary stcrage itls on wnit 20. If movo

87
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. temporary storage space is then required; try Strategy Two:

K4.2 Stratesy Twh-Réducé Nimber of Cases

in order to reduce the number of cases to be transferred to

- subroutiné VARNCE, the unsér may place a value K* into PCII

(formar 15). This will ensure that the U-statistics are
transferred to é’ui:’rodtine VARNCE in sets of K* rather than
sets 6f K. A temporary storage file rust be provided on
intérnal unit 29, and the size of K* is left to the
discrétion of the user (it should, of course, be smailer than K).
This strategy radices the second temm in the floating-point
storage spice to K*.
If this strategy is used, the subroutine VARNCE must be altered
to allow the reading of U-statistics from unit 29 (which
is refcrred to internally as INV). The first liné of the
subroutine is: (see Section K3.2.3).

SUBROUTINE VARNCE (T,M,I;N,FR,Q,INV)
Iin this statement, N is the total stratua size (whzch, for the
i'a‘iée'si stratum, corresponds to K), M is the size of the array
T which Folds the U-statistics (and which will equal K* if

KeN, and N otherwise), and INV is the unit on which the

U-statistics are stored. Theé Subroutine must be written so
as to expect to find the U-statistics in array T if M 3 N,

or to read the U;Statisﬁcﬁ from unit INV in A « 1 sets of M,
16 & N, whers '

[

& the largest integer smaller '.hnn(N v M).

rar

h i
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In the latter case; the last set of U-statistics will contain

B = N - MA values rather than M values, This is a rather
complicatcd procedure but a series of statements such as the

following will accomplish it.

SUBROUTINE VARNCE (T,),I,N,FR,Q,INV)
DIMENSION T(M)
L=0
: Initialize variasles etc:

ND = (N - I)/M + 1
DO 2 J = 1,ND
IF (ND.EQ.1) GO TO 1

" READ (INV) T -
1 DO 2K a2 I,N ‘
LaL+1l -
IF (L.GT.N) GO TO 3
; : Calcalate the variance
. centribution from each
. set of H U-stitistics
2 CONTINUE
3 Q= ceivrnsnes _ Put totalnriénce intoé
RETURN

END

K4.3 Stratcgy Three - Discard Stratum Variate Sums

IR brdér to reduce the number of variate suas transferted to
Fungeion F fﬂ dimcnsiofied arrays, the iiser may set PCI2 to 1,
and provide a temporary storage file on internal unit 21. This
will reduce the first tem in the dJoublo-precision storage
spics, WH to 1. Note that if only populaticn sims are to be
coﬂ;i;&red for dii.vhrintcs ti.é. if either PTI6 = i; or PC16 =
1 and all values of IMV are cither 1 or 2) then this siraicgy

is irrclcvant,

D8
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If this strategy is cmployed the functisn F must be altered
to allow for the reading of variate totals from an intcrnal
unit. The first twe lints of the function must be

-

DOUBLE PRECISION FUNCTION F (T,NT,S,MS,NS,R,N:,
COMON/COMME/L, INP, 1 .
The variable ‘L' is; as before, the nuater of the function to be
evaluated. The variable 'L is the number of the stratum
which has had its variate totals adjusted for the puwpnse of

numerical differentiation; the values of thess vuriate totals

are contained in arriy R (of dimension V).

The variable 'INV' contains the number of *he internal umit on
which all the non-adjusted variate totals reside; these are
in H groups of V. In order to under-tand the proesdure
déétriﬁcd Ecidw the user must reéalize that the fﬁnciidﬁ F is
used for two diffcrent purposcs: first, it is called several

is called to provide an estiuate of the function which is

printed as part of the output. The .nformation regarding

which purpose is appfopriaié is conveycd to the function using

variable *I':

1 if I 50, the function is nceded as part of the numerical
diéfcrcntiation process

2 if 1 = 0, the finction is nceded for the final estimate,

Case 1: I > 0: In this case the values of the V variatc sums
for stratum I aro contained in array R: In the first step

they skould be manipulatcd in the appropriate way and the

results stored clscwhere.

90

3y

oo e e

U




R et 4 "M—ﬂ—rﬂ\.’.ﬂww-m, o - I - C e e somoim s s — - s
Ml il . L T TR ST W NN 9

The pointer on the intcrnal unit INV will nos be located at
the first variate sum for the first case in stratom I + i
Thé sét of variate sums for stratum I + 1 are then read in-
from unit INV, the appropriate manipalation carried out, and
the results stored clsewhere. This process is repsated for
stratum I + 2, I + 3 and so on up to stratma H. Unit INV is
then rewound and the saze process repeated for strata 1, 2 ...
I - 1. Note that the sct of variate sums for stratum I is nc*

to Ee read Erbm unii i;‘if’;

Case 2: I = 0. 1In this case the H sets of variate sume are

to be read from unit INP and handled appropriately. The
pointer on unit INP will be pointing at the first case of

stratum I:

The following sct of statcments would *> one way of implementing
the above procedure. For simplicity it is assumed that there is
only one function to be svaluated by function E; h represents

the nuxber of strata;

DOUBLE PRECISION FURCTION F (T,NT.S,MS,5S,R,NR)
DOUBLE PRECISION T(NT),S(}5,N8) ,R(NR)
1F (1.£Q.0) GO T 1

. - Yarlate totals for stratos |

. are contained in aeray R.

. felewant sanipolations are
. cazried out and thy resclts
. stered elsesnero

IF (I:EQ:h) GO TO 3
1 1Pl -1

00 2 K = 1P;h

<o

READ (INP) R _
. Viriate tetals for strata e &,
: L2, harererd in, coe
. stratios at 3 tice; samigulated;
. 3rd the results stereds
TR
i0g
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'K4.4 Strategv Four - Deléte Strctum Descriptors

tF(rmnt;oms_.
Sap el
oAk s LIr

"'Rﬁ.\o(mp)a - |
. S T . Varhte totu. fcr strata l. 2

. ' o ' sis T 1 arc read dn; oo

. stratum at 2 ties, wanipulated,

. and the resolts storeds

CONTINUE -

a Caleolate | usieg the stered
_ ) . -~ values of the variate toosls
RN R . . for all strats .-

sessssesvene

END

In order to eliminate the need to store Stratum dencriptors

in dix:cnsxoned array.., the user may placo n in PC13 and
prov;de temporary storagp in unit 19 This will have tha
effect of replacing the tern W' in the floating-point total by

1 and of replacinz the term 2H in the integer total by 2,

S . ‘.._
S

KC S Strategy Fivc - The Last Resort

lf after resorting to all the above mezsur"s there is stiII

insuf‘icient storage spaco tbe user mny enter tn PCI4 tha

¥ which witi cad'e each set of V vn-iates_
S '-Z,‘,--- \.. -._; : :
nit within sets of sizc-;

.
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The implemecntation of this strategy involves the alteration RO

of subroutine WINPUT and of function F, #&irst, some notation
is necessary; let V and V* be as above, then let

: -~

= the largest intelcr smaller than V & V*

B =V - AV* ' f

(AifB =0
C={. S .
A+1ifE S>>0
he subroutiné WINPUT must be written so as to supply to the
calling progras, for cach case, C subsets of V# variates; with
only B variates contained in the last subset if B ~ 0. The

modifications to subroutine WINPUT are basically the sameé as those

made for subroutiné VARNCE in Strategy Two (seée K3.2.5 and K4.2).
The alterations to subroutine F differ depending upon whether
populaticn sums or stratum surs are involved. In either case
the user must pvovide a ccrnmon statement,

COM0N/CUSMEZL, INP, 1, INT, &

“

is given in C sets of V+. Just as for -Strategy Four, the variable
1 detornines the use to which F is €o be put: 11 = 0 the
population sums are vead from unit INT in € sets 6f V* and all
ate used to caleulate F. If I > U, then the array T will

contain the V* population sums for set M; these are manipulated

and then, as in Strategy Four, the remaining sets M & 1, N« 2

i .=« C are read in and manipulated, the unit INT is rowound, and

ERIC
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the sets 1, 2 . .. M - 1 are also read in and monipulated. The )
Fortran cxample in K4.3 may be modified as follows to {wplement
' : TS S
this procedure. Let c be the number of subsets (i.e. ¢ \ 0.
DOUBLE PRECISION FUNCTICN F(T,NT,S,MS,NS,R.NR) 1
DOUBLE PRECISION T(NT),S{MS,NS),R(NR) ' -
COMMON/COMMF/L, INP, I, INT M
IF (1.EQ.0) GO TO 1
: Kanipulate the varlate
sucs for subset B }
. . i
IF (M.EQ.c) GO TO 4 l
1P =M+ 1 g
GO TO 2 i ]
1 IP=1+1 i
DG 3 K = IP,¢ i B
READ (INT) T , §
R : T Hanioolats the variats -ty
: surs for subsets Mo 1, :
. Hel, e .
3 CONTINUE b _
4 PEWIND INT : B
iF (1.EQ.0.OR.M.EQ.1) GO TO 6 -
IP=M-1
105 K = 1,IP i
« - READ (INT) T Y
. e infoulate the variate 3
. ' surs for subsets 1, ¢ A
7 POT | . ’
S CONTIKUE ' o ) ERE
6 Fo tiviseeans . Caleulate F
RETURN '
END
1% stratun suas aré invalved, a proccdure combiiiing both the
' o - .
altcrations to F described in Strategy Three; and those above Nt
for the case of population sums must be inplemented. The .
proccdure is described beiuw, L ' - B
9‘ ,,‘;-':" N K
\.\:l.\ f
&) ( ]

ERIC
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I > ¢ the current values of R arc for set I, subset M. The

uscr may use these if desired, and (whatever the value of I)

must:

1 for M < C, read from INP, sets of V* values, onec at a time,

and do the corrcsponding calculations for subsets M + 1,

M+ 2 ...C for set I;

2 for I < H; read C subsets and do likewise for cach subset,

for each of the straza L + 1, I + 2 ... Hi ' .

3 Rewind INP

4 for 1 > 1, xead C subsets and do likewise for each Subset,

for each of strata 1; 2 ... 1 - 1; - ' )

5 for I > 0 and M > 1 read subsets 1, 2 ;.. M - 1 and do

likewisc for stratum I

K4.6 Strateay Six - The Ultinate Resor:

If, after attcmpting all the above strategies, theve is still

to Tahiti. It mdy not solve the starage problems; but from a

K4.7 Summary

The situation is summarized in Table Kd4.1.

Aruitoxt provided by Eic:
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Table Kd4.1 Summary of Stritegies for Use of Temporary Storage
Indicator User must
~_______ on Problem B provide Space I
§§r7:n§g§ywc:zrd Colunns wunit saved - Problems .
1 PC10=1 21 20 VR-1 none
2 PC11=K* 22-26 29 K=K* alterations to VARNCE
3 PC12:1 27 21 YH-1  alterations to F
a PC)3=1 23 19 3H-3 none
5 PCl4=V* 29-33 33.28  GV-6V* alterations to WINPUT :
... aleracions to F
i
K5 Sample Inputs and Outsuts i
These examplés, provided by the program's autiors; are deliberately
contrived to illustrate features of *he program.
Ezawpla A 3
Main bDeck (see X3.2.1): ‘ . ;
DIMENSION A(60),8(60)
DOUBLE PRECISION 0(60) ‘
DIMENSION T{1),NB(1) _ !
COMMON/ASAMP/NB,T : ;
. READ(5;60) (NB(I);I1=1;1) : :
60  FORMAT(1018)
REAR(S,63) (T(I),Is1,1) '
. 63  FORMAT (20F3.0) i
DIMENSION WT(5,3) !
T o []
COMMON/AR/RT K _
K=0 _ v
DO SI L=i;3 ‘
READ(S,600) WT(1,L),WT(2,L) :
600 FORMAT(2F1.0) B
8T(3,L) = KT(1,L)"*2 : o
WT(4,L) = LT(2;L)**2 :
Sk WT(5,B) = WI(L;L}*WT(2;L) ;
CALL PREPAR(A,60,N,60,D,60)
STOP "
END
=~ e e e

ERI
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Subroutines:

(a) (ses K3.2.5)
SUBROUTINE WINPUT(W,N)
DIMENSION WT(5,3),K(N)
COMMPN/AW/NWT K
K=K+ 1
Do 58 Js1,5

54 N(J) = WT(J,;K)

RETURN
END

(b) (see K3.2.4)

SUBROUTINE NSTRAT(I,N,FR,NT,1V)
DIFENSION NB{(1),T(1)
COMMON/ASAMP/NB, T

N= Nﬁ(i_)

FR = T(1)

NT s 0

IV = t

RETURN

END )

(2) (see K3.2.2) _
DOUBLE PRECISION FUNCTION F(<T,NT,XS,MS,NS,XR,NR)
DOUBLE PRECISION XT(NT),XS(MS,NS),XR(NR)
IDSQRTEEXTES) = XT(1)#°2/75.)*(XT(3) ~ XT(2)**2/75,)3
RETURN E .

END | | o
(Value of 'L' no* needed as there is only i function).

Data Deck:

card 1i Column 8 =1 - (see K3.2.1 and K3:2.4)
Card 2: Coluans 1-4 = 0.03° (sce K3.2 and K3:2.8)
Card 3: Column 131 (see K3.2 and i5:2.5) -

Column 2 = 2 S
Card 4: Column 1 = 0 (sco K3.2 snd ks;z.si “:g- -

Colunn 2 = 3 ST

97
_10e -




Printed Output:

DIMENSICN LIMITS ARE

STOP
END

Subropcines:

Card 5: Column 1 = 2

{see K3.2 and K3.2.5)

Column 2 = &

Card 6:. Column 4 = 1 ¢pct)
Column § = 1 (pPc2)
Column 12 = § ¢pC3)
Column 13 = 2 )
Column 16 = 2 (PCe)
Column 35 = 2 {pCle)

3.7 7. .

FUNCTION ‘1 .69337524+00 .64704124-01 .25437009+00 .36685776+00

Examplez B8 (Same problem as Example #)
Main Deck (cee K3:2:1):
DIMENSION A(60) ;N(60)
DOUBLE PRECISION D{50)
CALL PREPAR{A,60,N,60,D,60)

Aruitoxt provided by Eic:

(a) (sce K3.2 and K3.2.3; note that thir is simple random

sanpie forczula)

SUBROUTINE VARNCE(T,M,I,N,FR,Q,INU)
DIMENSION T(:)

L=0

Qq=0.

B =0,

ND = (N - 1)/M + 1

A =N -

N1 3=} M0

IF (ND.EQ.1) GO TO 3 .
READ(INU) T

DO 1 K1,

LsLa+1

10, _
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IF (L.GT.N) GO TO Z
S=t |
H=B+TIK) - -

IF (LEQ l) GOTO L
Q=@+ (S7T(0) - B*2/(8%(S - 1))

1 CONTINUE

2 Q= (1. - FR JIASQICA - 1)
RETURN
£ND

(b) (sce K3.2:2 and K4:4)
DOUBLE PRECISICH FUNCTION F(XT;NT;XS;MS;NS,XR,NR)
DOUBLE PRECISION XT(NT),XS(MS;NS),XR(NR)
CONMON/COMME/L, INP, T, INT,M
DOUBLE PRECISION XF(6)
J = 2™
IF (M.EQ.0) GO TO 1
XP(J-1) = XT(1)
XP(J) = XT(2)
IF (M.EQ.3) GO TO 4
1 MP=ME1.
DO 3 K = MP,3
READ(INTY XT-
| XPEJ+1) = XT(1)
XP{J+2) = X1(2)
JaJe+2
. REITIND INT
J =0
IS (M.1E.1) GO TO 6
MP =M-1
DO § Kel;MP
READ(INT) XV
XP(341) = XT(1)
XP(3+2) = X1(2)
J=Je+2
6 F = IXP(S) - XPUI *xP(2)775.37
IDSQRT((XPL3) - XP(1)**2/75.)*(XP(3) - xP(z)--zns 3
RETURN
EXD

T,

99
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Data Deck:
. Card 1: Column 4 = 1 L)
' Column 8 = 1 | (pc2)
Cotuzn 12 = § )
Cotumn 19 = 1 (FCs)
Cotuzm 20 = 1 (FC9)
Colwm 21 = 1 {PC10)
_ Cotumn 26 = 2 epcil)
Cotusn 28 = 1 (PC13)
Column 33 = 2 (pCl4) : - ' @
Colurn 35 = 2 (PC16) ¥ -
Card 2: Columns 1-15 = (18,F4.0,12,11) (see K3.1.2) g
Catd 3: Column 8 a-3 §
Columns 13-14 = 75 §
Column 15 = 3 ;
Cavd 4: Coluins 1-7 = (2F2.0) (see K3:1.3) i
Cards S-14: 0101
0101
0100 3
0003 !
0009 . ;
0000
0208 . :
0354 ;f
1600 ;

|
|
b
lem}
i
I
|

ERI
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Printed Output:

DIMENSION LINITS ARE 11 4 4

DERIVATIVES FOR FUNCTION 1

.83205026-02  .27139816-05

1 3 -

2 -,12800773-02 .156245:5-04
3 3 -.69337525-02 .41796269-05
4 3  -.53336558-03  .61858475-04

5 3 .55470018-02  .13210732-03
U-VALUES FOR FUNCTION 1,5TRATUM 1

Z.28017+00 =.216715+00
.232831-07
FUNCTION 1 .69337523+00 .63703123-01 .25337009+00  36685776+00
Note: Internal units 19, 20, 22, 23, 23, 25, 26, 27 ard 29 are
all used.

Ezemple C
Main Deck: same as for Example B
(a) (see ﬁi;i;é;j
SUBROUTINE NSUBLV (I;J;1HV)
IaV = MINO(I-1,3-1)
RETURN
END

(b) (sec K3.2.7)
SUBROUTINE NSUBFV (L,J,IFV)
IFV = MINO (L-1, J-1)
RETURM
END

A(c) - Isee Ri 2. é]

DOUELE PRECISION FUNCTION F((T ‘Tl' XS,.\S,.\S \R)
DOULE PRI'CISION XT(NT), XS( ZS \a) \R(\R)

- EOMMOR, COMMF/L

F = X£.(2,1)/X5(1,1)

101

119
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Data Deck:

(0

Card 1: Colomi 4 =
Cotumn 8 = 2
Colum 12 = 2
Column 34 = 1
Colwm 35 = 1
Card 2: Cotumns 1-13 = (I1,F1.0,211)
Card 3: Column I = 2
Column 3 = 4
Card 4: same as Card 3
Card §: Colwns 1-7 = (2Fi:0)
Cards 7-10: 24
26
00
20
Prirted Outpiit
DISENSION LIMITS ARE 19 9 6
FUNCTION 1 .50000000301 .13000000+02

FUNCTION 2 .50000000+00 .125000630+40

102

.36055513+01 .72111025+C9
.35355339+400 .70710678+00
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